Artwork

Innhold levert av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Episode 4: Open AI Code Red, TPU vs GPU and More Autonomous Coding Agents

1:04:22
 
Del
 

Manage episode 522824670 series 3703995
Innhold levert av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

In this episode of Artificial Developer Intelligence, hosts Shimin and Dan discuss the evolving landscape of AI in software engineering, touching on topics such as OpenAI's recent challenges, the significance of Google TPUs, and effective techniques for working with large language models. They also delve into a deep dive on general agentic memory, share insights on code quality, and assess the current state of the AI bubble.

Takeaways

  • Google's TPUs are designed specifically for AI inference, offering advantages over traditional GPUs.
  • Effective use of large language models requires avoiding common anti-patterns.
  • AI adoption rates are showing signs of flattening out, particularly among larger firms.
  • General agentic memory can enhance the performance of AI models by improving context management.
  • Code quality remains crucial, even as AI tools make coding easier and faster.
  • Smaller, more frequent code reviews can enhance team communication and project understanding.
  • AI models are not infallible; they require careful oversight and validation of generated code.
  • The future of AI may hinge on research rather than mere scaling of existing models.

Resources Mentioned
OpenAI Code Red
The chip made for the AI inference era – the Google TPU
Anti-patterns while working with LLMs
Writing a good claude md
Effective harnesses for long-running agents
General Agentic Memory Via Deep Research
AI Adoption Rates Starting to Flatten Out
A trillion dollars is a terrible thing to waste

Chapters
Connect with ADIPod

  continue reading

4 episoder

Artwork
iconDel
 
Manage episode 522824670 series 3703995
Innhold levert av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Shimin Zhang & Dan Lasky, Shimin Zhang, and Dan Lasky eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

In this episode of Artificial Developer Intelligence, hosts Shimin and Dan discuss the evolving landscape of AI in software engineering, touching on topics such as OpenAI's recent challenges, the significance of Google TPUs, and effective techniques for working with large language models. They also delve into a deep dive on general agentic memory, share insights on code quality, and assess the current state of the AI bubble.

Takeaways

  • Google's TPUs are designed specifically for AI inference, offering advantages over traditional GPUs.
  • Effective use of large language models requires avoiding common anti-patterns.
  • AI adoption rates are showing signs of flattening out, particularly among larger firms.
  • General agentic memory can enhance the performance of AI models by improving context management.
  • Code quality remains crucial, even as AI tools make coding easier and faster.
  • Smaller, more frequent code reviews can enhance team communication and project understanding.
  • AI models are not infallible; they require careful oversight and validation of generated code.
  • The future of AI may hinge on research rather than mere scaling of existing models.

Resources Mentioned
OpenAI Code Red
The chip made for the AI inference era – the Google TPU
Anti-patterns while working with LLMs
Writing a good claude md
Effective harnesses for long-running agents
General Agentic Memory Via Deep Research
AI Adoption Rates Starting to Flatten Out
A trillion dollars is a terrible thing to waste

Chapters
Connect with ADIPod

  continue reading

4 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill