Artwork

Innhold levert av Real Python. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Real Python eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Preparing Data Science Projects for Production

59:12
 
Del
 

Manage episode 519418766 series 2637014
Innhold levert av Real Python. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Real Python eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

How do you prepare your Python data science projects for production? What are the essential tools and techniques to make your code reproducible, organized, and testable? This week on the show, Khuyen Tran from CodeCut discusses her new book, “Production Ready Data Science.”

Khuyen shares how she got into blogging and what motivated her to write a book. She shares tips on how to create repeatable workflows. We delve into modern Python tools that will help you bring your projects to production.

Topics:

  • 00:00:00 – Introduction
  • 00:01:27 – Recent article about top six visualization libraries
  • 00:02:19 – How long have you been blogging?
  • 00:03:55 – What do you cover in your book?
  • 00:07:07 – Potential issues with notebooks
  • 00:11:40 – Structuring data science projects
  • 00:15:12 – Reproducibility and sharing notebooks
  • 00:20:33 – Using Polars
  • 00:26:03 – Advantages of marimo notebooks
  • 00:34:21 – Video Course Spotlight
  • 00:35:44 – Shipping a project in data science
  • 00:42:10 – Advice on testing
  • 00:49:50 – Creating importable parameter values
  • 00:53:55 – Seeing the commit diff of a notebook
  • 00:55:12 – What are you excited about in the world of Python?
  • 00:56:04 – What do you want to learn next?
  • 00:56:52 – What’s the best way to follow your work online?
  • 00:58:28 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 episoder

Artwork
iconDel
 
Manage episode 519418766 series 2637014
Innhold levert av Real Python. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Real Python eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

How do you prepare your Python data science projects for production? What are the essential tools and techniques to make your code reproducible, organized, and testable? This week on the show, Khuyen Tran from CodeCut discusses her new book, “Production Ready Data Science.”

Khuyen shares how she got into blogging and what motivated her to write a book. She shares tips on how to create repeatable workflows. We delve into modern Python tools that will help you bring your projects to production.

Topics:

  • 00:00:00 – Introduction
  • 00:01:27 – Recent article about top six visualization libraries
  • 00:02:19 – How long have you been blogging?
  • 00:03:55 – What do you cover in your book?
  • 00:07:07 – Potential issues with notebooks
  • 00:11:40 – Structuring data science projects
  • 00:15:12 – Reproducibility and sharing notebooks
  • 00:20:33 – Using Polars
  • 00:26:03 – Advantages of marimo notebooks
  • 00:34:21 – Video Course Spotlight
  • 00:35:44 – Shipping a project in data science
  • 00:42:10 – Advice on testing
  • 00:49:50 – Creating importable parameter values
  • 00:53:55 – Seeing the commit diff of a notebook
  • 00:55:12 – What are you excited about in the world of Python?
  • 00:56:04 – What do you want to learn next?
  • 00:56:52 – What’s the best way to follow your work online?
  • 00:58:28 – Thanks and goodbye

Show Links:

Level up your Python skills with our expert-led courses:

Support the podcast & join our community of Pythonistas

  continue reading

277 episoder

Todos los episodios

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill