Artwork

Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

ABS: Scanning Neural Networks for Back-Doors by Artificial Brain Stimulation

16:08
 
Del
 

Manage episode 424087975 series 3498845
Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

This paper presents a technique to scan neural network based AI models to determine if they are trojaned. Pre-trained AI models may contain back-doors that are injected through training or by transforming inner neuron weights. These trojaned models operate normally when regular inputs are provided, and mis-classify to a specific output label when the input is stamped with some special pattern called trojan trigger. We develop a novel technique that analyzes inner neuron behaviors by determining how output acti- vations change when we introduce different levels of stimulation to a neuron. The neurons that substantially elevate the activation of a particular output label regardless of the provided input is considered potentially compromised. Trojan trigger is then reverse-engineered through an optimization procedure using the stimulation analysis results, to confirm that a neuron is truly compromised. We evaluate our system ABS on 177 trojaned models that are trojaned with vari-ous attack methods that target both the input space and the feature space, and have various trojan trigger sizes and shapes, together with 144 benign models that are trained with different data and initial weight values. These models belong to 7 different model structures and 6 different datasets, including some complex ones such as ImageNet, VGG-Face and ResNet110. Our results show that ABS is highly effective, can achieve over 90% detection rate for most cases (and many 100%), when only one input sample is provided for each output label. It substantially out-performs the state-of-the-art technique Neural Cleanse that requires a lot of input samples and small trojan triggers to achieve good performance.

Source:

https://www.cs.purdue.edu/homes/taog/docs/CCS19.pdf

Narrated for AI Safety Fundamentals the Effective Altruism Forum Joseph Carlsmith LessWrong 80,000 Hours by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. ABS: Scanning Neural Networks for Back-Doors by Artificial Brain Stimulation (00:00:00)

2. ABSTRACT (00:00:17)

3. 1 INTRODUCTION (00:01:37)

4. 2 LEAST-TO-MOST PROMPTING (00:05:38)

5. 3 RESULTS (00:07:41)

83 episoder

Artwork
iconDel
 
Manage episode 424087975 series 3498845
Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

This paper presents a technique to scan neural network based AI models to determine if they are trojaned. Pre-trained AI models may contain back-doors that are injected through training or by transforming inner neuron weights. These trojaned models operate normally when regular inputs are provided, and mis-classify to a specific output label when the input is stamped with some special pattern called trojan trigger. We develop a novel technique that analyzes inner neuron behaviors by determining how output acti- vations change when we introduce different levels of stimulation to a neuron. The neurons that substantially elevate the activation of a particular output label regardless of the provided input is considered potentially compromised. Trojan trigger is then reverse-engineered through an optimization procedure using the stimulation analysis results, to confirm that a neuron is truly compromised. We evaluate our system ABS on 177 trojaned models that are trojaned with vari-ous attack methods that target both the input space and the feature space, and have various trojan trigger sizes and shapes, together with 144 benign models that are trained with different data and initial weight values. These models belong to 7 different model structures and 6 different datasets, including some complex ones such as ImageNet, VGG-Face and ResNet110. Our results show that ABS is highly effective, can achieve over 90% detection rate for most cases (and many 100%), when only one input sample is provided for each output label. It substantially out-performs the state-of-the-art technique Neural Cleanse that requires a lot of input samples and small trojan triggers to achieve good performance.

Source:

https://www.cs.purdue.edu/homes/taog/docs/CCS19.pdf

Narrated for AI Safety Fundamentals the Effective Altruism Forum Joseph Carlsmith LessWrong 80,000 Hours by Perrin Walker of TYPE III AUDIO.

---

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. ABS: Scanning Neural Networks for Back-Doors by Artificial Brain Stimulation (00:00:00)

2. ABSTRACT (00:00:17)

3. 1 INTRODUCTION (00:01:37)

4. 2 LEAST-TO-MOST PROMPTING (00:05:38)

5. 3 RESULTS (00:07:41)

83 episoder

Усі епізоди

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett