Player FM - Internet Radio Done Right
132 subscribers
Checked 3d ago
Lagt til eleven år siden
Innhold levert av Karl Urban. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Karl Urban eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!
Gå frakoblet med Player FM -appen!
Podcaster verdt å lytte til
SPONSET
<
<div class="span index">1</div> <span><a class="" data-remote="true" data-type="html" href="/series/the-sarah-fraser-show-3599341">The Sarah Fraser Show</a></span>


For twenty years, media personality Sarah Fraser has made a name for herself with her bold, hilarious, and totally unfiltered takes on everything from pop culture to parenting, life's messy struggles, and surviving the chaos of Hollywood. On her hit daily show, The Sarah Fraser Show, Sarah dives into the wildest corners of celebrity culture, interviewing and dissecting the most outrageous reality stars and offbeat personalities from Bravo, Sister Wives, 90 Day Fiance, and beyond. Nothing is off-limits, and you never know what’s coming next—but with Sarah, it’s guaranteed to be unforgettable. For advertising or collabs, reach out to thesarahfrasershow@gmail.com
AstroGeo - Geschichten aus Astronomie und Geologie
Merk alt (u)spilt...
Manage series 44307
Innhold levert av Karl Urban. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Karl Urban eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Astronomie und Geologie: Wahre Geschichten zwischen Weltall und Erde
…
continue reading
117 episoder
Merk alt (u)spilt...
Manage series 44307
Innhold levert av Karl Urban. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Karl Urban eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Astronomie und Geologie: Wahre Geschichten zwischen Weltall und Erde
…
continue reading
117 episoder
Alle episoder
×A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Vulkanjahr 1783: Als die Laki-Feuer auf Island die Welt veränderten 1:20:39
1:20:39
Spill senere
Spill senere
Lister
Lik
Likt1:20:39
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Am 8. Juni 1873 sieht der Pfarrer Jón Steingrímsson im Süden Islands eine schwarze Wolke über seiner Gemeinde und hört ein fernes Grollen. Es ist der Beginn eines Vulkanausbruchs, der nicht weit von dem Dorf Prestbakki begonnen hat. Dieser Ausbruch wird längst nicht nur die bäuerliche Gesellschaft Islands schwer treffen. Es ist eine Katastrophe, die schon bald globale Ausmaße annimmt und die in weiten Teilen Europas und sogar in Asien zu Missernten führt. Karl erzählt in dieser Folge, wie der naturinteressierte und sprachlich gewandte Pfarrer als Augenzeuge von den Laki-Feuern berichtet, die acht Monate lang wüten und die zu den schwersten Vulkanausbrüchen der Menschheitsgeschichte gehören. Allein in den ersten Wochen bringt die neu entstandene Vulkanspalte sechs Kubikkilometer Lava und Asche an die Oberfläche. Die Lava ergießt sich über Flusstäler in jene Ebene, in der das Dorf Prestbakki liegt. Das glutflüssige Gestein zerstört etliche Höfe. Niedergehende Asche lässt die kargen Weiden verdorren, Tiere durch toxisches Regenwasser zugrunde gehen und führt zu einer mehrjährigen Hungersnot, bei der ein Fünftel der Isländer ums Leben kommt. Aber die Ausmaße der Katastrophe reichen viel weiter: Asche und schwefelhaltige Gase gelangen durch Dampfexplosionen in große Höhen bis in die Stratosphäre, wo sie durch Westwinde binnen weniger Stunden nach Europa gelangt. Hier leiten sie ein Jahr ohne Sommer ein: Trockener vulkanischer Dampf blockt die Sonnenstrahlung ab, führt zu einer Dürre oder saurem Regen und zu Atembeschwerden bei vielen Menschen. Bei allem Elend von 1783 geht es auch um das Island von heute, wo Vulkanausbrüche zum Alltag gehören. Karl erzählt von seiner Recherchereise in den Südwesten der Insel, wo sich in den letzten vier Jahren ebenfalls große Lavamengen ergossen – allerdings ohne große Rauch- oder Ascheemissionen. Es geht um die modernen Schutzwälle gegen die Lava, um Touristen-Erruptionen – und darum, welche Auswirkungen ein Laki-Feuer in heutiger Zeit hätte. Weiterhören bei AstroGeo Folge 13: Isländische Vulkane Folge 64: Massensterben im Treibhaus Folge 86: Das Ende der Dinosaurier: Massensterben im Frühling Weiterführende Links WP: Jón Steingrímsson WP: Laki-Krater WP: Kirkjubæjarklaustur WP: Haar der Pele WP: Flutbasalt WP: Mount St. Helens WP: Saurer Regen WP: Vulkanausbrüche beim Fagradalsfjall seit 2021 DLF: Lavaflut – wie gefährlich sind Islands Vulkane? (Feature von Karl) Quellen Buch: Jón Steingrimsson (Autor), Keneva Kunz (Übersetzer): Fires of the Earth – The Laki Eruption 1783–1784, Nordic Volcanological Institute and the University of Iceland Press, Reykjavík (1998) Fachartikel: Thodarson & Self: Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment , Journal of Geophysical Research (2003) Fachartikel: Schmidt et al.: Excess mortality in Europe following a future Laki-style Icelandic eruption , PNAS (2011) Fachartikel: Zabri et al.: Modeling the 1783–1784 Laki Eruption in Iceland: 2. Climate Impacts , JGR Atmospheres (2019) Episodenbild: Ausbruch des Vulkans Eyjafjallajökull im Jahr 2010; Quelle CC-BY-SA 1.0 David Karnå…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 AstroGeoPlänkel: Von gehypten Planeten und mächtigen Isotopen 1:05:43
1:05:43
Spill senere
Spill senere
Lister
Lik
Likt1:05:43
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! In dieser Folge widmen sich Franzi und Karl wieder dem Feedback zu den letzten Episoden. Sie tauchen zu Beginn in vermeintliche mediale Hype-Themen aus der Astronomie ein. Das betrifft die Suche nach einem bisher unentdeckten Planet 9 in unserem Sonnensystem sowie den Exoplaneten K2-18b, den manche Fachleute für eine Wasserwelt mit einer starken Biosignatur in seiner Atmosphäre halten, während der allergrößte Anteil der Fachleute weiterhin sehr skeptisch ist. Franzi hat dazu 2024 bereits eine Folge beigesteuert ( AG088 ) und ordnet die neuen Ergebnisse ein. Es geht noch einmal um Karls Zweiteiler über die Milanković-Zyklen und wie Forscherinnen und Forscher nachweisen konnten, dass astronomische Effekte das Kommen und Gehen von Eiszeiten beeinflussen. Einige Hörer erinnern sich nicht daran, davon in ihrer Schullaufbahn gehört zu haben. Geologie im Schulunterricht scheint zumindest bei Franzi und Karl aber genauso wenig eine Rolle gespielt zu haben. Es gab einige Rückmeldungen zu Isotopen und wie Forschende mit ihrer Hilfe etwas über die Erdgeschichte erfahren können. Tatsächlich ist es kompliziert und gleichzeitig sehr faszinierend, was allein mit dem Isotop Sauerstoff-18 sowie mit dem stabilen Isotop des Wasserstoffs, Deuterium, alles möglich ist. Unsere Hörenden berichten von der Altersbestimmung des Grundwassers, vermeintlich deutschem Spargel im Supermarkt und der Kindheit des Gletschermanns Ötzi. Auch die Zahlenmystik des Paul Dirac spielt noch einmal eine Rolle – genauso wie dessen Biografie mit einer passenden Buchempfehlung. Auch geht es um die Bebilderung des AstroGeo-Folgen mit KI-Bildern: Bisher haben Franzi und Karl KI-Bilder vereinzelt eingesetzt und immer transparent erwähnt. Zuletzt geht es um die aktuelle Planung einer AstroGeo-Exkursion. Dazu gibt es nun eine Umfrage. Sie ist unverbindlich und dient dazu, das Interesse für die nächsten Schritte abzuschätzen. Bei Interesse stimmt bitte bis zum 18. Juni 2025 mit ab! Weiterhören bei AstroGeo Folge 88: Biosignatur auf Ozeanwelt K2-18b – lebt da was? Folge 111: Planet 9 aus dem All: Suche nach der verborgenen Welt Folge 113: Ändert die Erdbahn das Klima? Milanković auf dem Prüfstand Folge 114: Expandierende Erde: große Zahlen und kleine Schwerkraft Weiterführende Links TechSpot: Astronomers spot possible Planet Nine in data spanning 23 years Fachartikel: Madhusudhan et al.: New Constraints on DMS and DMDS in the Atmosphere of K2-18 b from JWST MIRI , The Astrophysical Journal Letters (2025) PDF: Verwendung von Deuterium und Sauerstoff-18 als natürliche Umweltisotope und als künstliche Markierungsmittel [ archive.org ] Buch: Graham Farmelo – The Strangest Man: The Hidden Life of Paul Dirac , Quantum Genius (2009) Umfrage: Wie und wo sollte die AstroGeo-Exkursion stattfinden? Episodenbild: CC-BY-SA 2.0 Picturepest ; ChatGPT / F. Konitzer…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Expandierende Erde: große Zahlen und kleine Schwerkraft 1:14:08
1:14:08
Spill senere
Spill senere
Lister
Lik
Likt1:14:08
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Im Jahr 1937 hatte Paul Dirac eigentlich so alles erreicht, was man als theoretischer Physiker erreichen konnte: Der Brite hatte die Quantenphysik mit begründet und sie mit Einsteins Spezieller Relativitätstheorie vereint. Fast aus Versehen hatte er erstmals eine neue Form von Materie beschrieben, die wir heute als Antimaterie kennen. Paul Dirac hatte nicht nur eine Professur an der angesehen Universität von Cambridge bekommen, sondern bekam auch im Alter von nur 31 Jahren den Nobelpreis für Physik zugesprochen. Doch nun wandte sich Dirac größeren Dingen zu: der Kosmologie. Paul Dirac entwarf die „Large Numbers Hypothesis“, die Hypothese der großen Zahlen. Seine Vermutung besagte, dass das Verhältnis der Zahlenwerte von Naturkonstanten sich merkwürdigerweise immer wieder eine ziemlich große Zahl ergibt, nämlich zehn hoch 39. Was für die Meisten ein nicht besonders seltsamer Zufall sein mag, hatte für Dirac tiefere Bedeutung: Er schloss daraus, dass die Naturgesetze im Universum nicht immer und überall gleich waren – und dass die Naturkonstanten entgegen ihrem Namen nicht konstant, sondern variabel seien. Dabei hatte es Dirac vor allem auf eine Naturkonstante abgesehen: die Gravitationskonstante. Diese sei vor Jahrmilliarden viel größer gewesen. Und das würde bedeuten: Was wir als Schwerkraft kennen, nimmt mit zunehmendem Alter des Universums ab. Während Paul Diracs Ausflug in die Kosmologie – oder in die Zahlenmystik – von seinen Kolleginnen und Kollegen größtenteils ignoriert wurde, gab es einen deutschen Physiker, der die Hypothese der Großen Zahlen ernst nahm: Pascual Jordan beschäftigte sich vor allem damit, welche messbaren Auswirkungen so eine geringer werdende Schwerkraft auf unsere Erde haben könnte. Demnach sollte mit einer abnehmenden Gravitationskonstante unsere Erde selbst expandieren. In dieser Folge des AstroGeo-Podcasts erzählt Franzi die Geschichte hinter der sogenannten Expansionstheorie – und damit ist nicht das Universum selbst gemeint! Weiterhören bei AstroGeo Folge 51: Die verlorenen Mondspiegel Folge 68: Wie Marie Tharp die Geologie revolutionierte Folge 76: Subduktion: Das tiefe Geheimnis des Blauen Planeten Weiterführende Links WP: Expansionstheorie WP: Paul Dirac WP: Positron WP: Niels Bohr WP: Herbert Dingle WP: Large numbers hypothesis WP: Antimaterie WP: Pascual Jordan WP: Gravitationskonstante WP: Gravitationswaage WP: Plattentektonik WP: Alfred Wegener WP: Kontinentalverschiebung Quellen Fachartikel: The Cosmological Constants (1937) Fachartikel: Pascual Jordan, Varying Gravity, and the Expanding Earth (2015) Fachartikel: Accuracy of the International Terrestrial Reference Frame origin and Earth expansion (2011) Buch: Helge Kragh – Higher Speculations (2015) Buch: Helge Kragh – Dirac: A Scientific Biography (1990) Buch: Graham Farmelo – The Strangest Man: The Hidden Life of Paul Dirac, Quantum Genius (2009) Vortrag von Paul Dirac: Does the Gravitational Constant Vary? (1979) Episodenbild: ChatGPT / F. Konitzer…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Ändert die Erdbahn das Klima? Milanković auf dem Prüfstand 1:22:58
1:22:58
Spill senere
Spill senere
Lister
Lik
Likt1:22:58
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Warum gab es in der Erdgeschichte immer wieder Eiszeiten? Mit dieser Frage hatte sich der serbische Mathematiker, Ingenieur und Geowissenschaftler Milutin Milankovíc intensiv beschäftigt und ab 1920 seine Theorie veröffentlicht. Demnach beeinflussen Schwankungen der Erdbahn und ihrer Rotationsachse im Laufe von mehreren zehntausend Jahren, wie viel Sonnenstrahlung die Erdoberfläche erreicht. Milankovićs Theorie hatte zunächst aber eine Achillesferse – denn sie war eine theoretische Arbeit, die auf astronomische Daten in Verbindung mit physikalischen Gleichungen setzte. Ob die Milanković-Zyklen sich auch in geologischen Daten, in Gesteinen, Sedimenten oder Fossilien nachweisen lassen, war unklar. Selbst 1958, im Todesjahr des Forschers, war seine Theorie umstritten. Im darauffolgenden Jahrzehnt sollten die Milanković-Zyklen dann fast alle ihre Unterstützer verlieren. Karl erzählt in seiner zweiten Folge ( hier geht es zu Teil 1 ), wie es weiterging mit den Milanković-Zyklen. Die Theorie geriet in eine Krise, weil dank des Manhattan-Projektes und daraus erwachsener Kernphysik mehrere neue Methoden entwickelt worden waren, um das Alter von Gesteinen und Sedimenten genau zu messen. Vor allem war das die Radiokarbonmethode des Chemikers Willard Libby, die trotz einiger Einschränkungen bis heute zu den wichtigsten wissenschaftlichen Werkzeugen überhaupt gehört. Bei der Datierung von immer mehr Gesteinen oder Sedimenten wurde bald auch das Alter der letzten Eiszeit immer genauer bestimmt. Zwar schien der Zeitpunkt des sogenannten letzten glazialen Maximums von rund 18.000 Jahren mit Milankovićs Vorhersagen übereinzustimmen. Bald zeigten sich aber immer neue Abweichungen in der Klimageschichte des letzten 150.000 Jahre, die nicht zu allen Vorhersagen der Milanković-Zyklen zu passen schienen. Was folgte, war eine weltweite Spurensuche, die auf tropischen Inseln und zuletzt in die Tiefsee der Ozeane führte, wo Sediment ein weit zurückreichendes Klimaarchiv bildet. Erst 1976 schien die Debatte um die Milanković-Zyklen beigelegt worden zu sein. Die Forschung zu diesem Phänomen dauert aber bis heute an. Weiterhören bei AstroGeo Folge 110: Von Gletschern und Gestirnen: Die Entdeckung der Milanković-Zyklen Weiterführende Links WP: Milanković-Zyklen WP: Milutin Milanković WP: Willard Libby WP: Radiokarbonmethode WP: Manhattan-Projekt WP: Uran-Thorium-Datierung WP: Barbados WP: Radiolarien WP: Diatomeen WP: CLIMAP Project (englisch) WP: John Imbrie WP: Delta 18O WP: André Berger WP: 100.000-year problem (englisch) Quellen Tagungsband: Berger et al.: Milankovich and the Climate – Understanding the Mystery , NATO ASI Series (1984) Buch: John Imbrie & Katherine Palmer Imbrie: Ice Ages – Solving the Mystery , Harvard University Press (1982) Fachartikel: Hays, Imbrie & Shackelton: Variations in Earth‘s Orbit: Pacemaker of the Ice Ages , Science (1976) Fachartikel: Barker et al.: Glacial Cycles: Distinct roles for precession, obliquity, and eccentricity in Pleistocene 100-kyr glacial cycles , Science (2025) Episodenbild: Kieselskelett des einzelligen Strahlentierchens (Radiolaria) Stylodicta clavata, Fundort: Barbados; Quelle: CC-BY-SA 2.0 Picturepest…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 AstroGeoPlänkel: Schwankende Erdbahn und ein Phantom-Planet 58:37
58:37
Spill senere
Spill senere
Lister
Lik
Likt58:37
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! In dieser Folge widmen sich Franzi und Karl wieder dem Feedback zu den letzten Episoden. Karl erzählt von seiner Reise nach Island, wo er zwar beeindruckende Polarlichter sehen konnte, aber leider – oder glücklicherweise? – keinen Vulkanausbruch miterlebt hat. Es geht um die Aussprache des Namens von Louis Agassiz sowie die problematischen Ansichten dieses Wissenschaftlers, was Karl zu einer kurzen Einordnung historischer Persönlichkeiten bewegt. Es geht um den nötigen Tiefgang, vereinzelt wahrgenommenes zu langsames Sprechtempo und warum es toll ist, wenn uns auch junge Menschen gerne hören. Franzi taucht dank einiger guter Hinweise in die Tiefen der Orbitmechanik ab sowie in die Untiefen der statistischen Gegenargumente zur Existenz eines neunten Planeten in den äußeren Regionen unseres Sonnensystems. Eine Kritik gilt der Tatsache, dass Franzi und Karl anscheinend ein neues Lieblings-Füllwort entdeckt haben: genau! Vorschläge für neue Füllwörter werden dankend angenommen. Karl erzählt von der Idee einer AstroGeo-Exkursion, anders ausgedrückt: einem AstroGeo-Wandertag. Am Ende geht es darum, warum es nicht häufiger Folgen mit Geschichten gibt – und warum AstroGeo dafür mehr finanzielle Unterstützung bräuchte. Karl und Franzi hätten beide große Lust darauf! Ihr auch? Weiterhören bei AstroGeo Folge 110: Von Gletschern und Gestirnen: Die Entdeckung der Milanković-Zyklen Folge 111: Planet 9 aus dem All: Suche nach der verborgenen Welt Weiterführende Links WP: Plan 9 aus dem Weltall WP: Ed Wood xkcd: Planet Definitions Fachartikel: Batygin & Morbidelli: Dynamical Evolution Induced by Planet Nine, The Astronomical Journal (2017)…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Planet 9 aus dem All: Suche nach der verborgenen Welt 1:13:34
1:13:34
Spill senere
Spill senere
Lister
Lik
Likt1:13:34
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Wie viele Planeten gibt es in unserem Sonnensystem? Im Jahr 2006 schien zumindest diese eine Frage ein für allemal geklärt zu sein. Denn der zuvor neunte Planet Pluto war zum Zwergplaneten degradiert worden. Fortan umrundeten nur noch acht Planeten unsere Sonne – und Pluto, der ehemalige Planet der Herzen, war nur noch eines von tausenden sogenannten transneptunischen Objekten, kurz TNOs, die unsere Sonne jenseits von Neptun in teilweise ziemlich merkwürdigen Bahnen umlaufen. Doch die scheinbare Ruhe rund um die Planetenfrage in unserem Sonnensystem sollte nicht lange dauern. Nur zehn Jahre später, im Jahr 2016, veröffentlichten zwei US-amerikanische Forscher einen Fachartikel, in dem stand: Es gibt doch neun Planeten in unserem Sonnensystem! Der von den Forschenden beschriebene „Planet Neun“ sollte so richtig groß sein, weit massereicher als unsere Erde, wenn auch nicht gar so schwer wie Neptun. Mehrere tausend Jahre würde dieser Planet neun für einen Umlauf um die Sonne brauchen, und so weit weg sein, dass er für Astronominnen und Astronomen auf der Erde quasi unsichtbar wäre – ein schwacher, winziger Lichtpunkt draußen im All, aber eben doch ein richtiger, großer Planet. Dieser Planet Neun würde sich lediglich über seinen Einfluss auf die transneptunischen Objekte im äußeren Sonnensystem verraten. Denn irgendetwas an deren Umlaufbahnen war und ist bis heute komisch: Mit dem derzeitigen Verständnis unseres Sonnensystems lassen sie sich nicht erklären. Doch ein weiterer Planet könnte sie mit seiner Schwerkraft beeinflussen und so dieses Rätsel lösen. Ein Planet Neun wäre demnach eine elegante Lösung für viele noch offene Fragen im äußeren Sonnensystem – aber gibt es ihn auch wirklich? Denn trotz jahrelanger Suche verlief die Jagd nach ihm bislang erfolglos. In dieser Podcastfolge erzählt Franzi die Geschichte von der Jagd nach diesem Planeten: Es ist eine Geschichte von komischen oder vielleicht doch gar nicht so komischen Umlaufbahnen von Transneptun-Objekten, alternativen Erklärungsversuchen mithilfe eines vorbeifliegenden Sterns und dem Warten auf ein neues Teleskop, das endgültig klären könnte, wie viele Planeten es in unserem Sonnensystem gibt. Weiterhören bei AstroGeo Folge 62: Plutos Herz und vier Sorten Eis Folge 72: Nizza-Modell: Chaos zwischen jungen Planeten Folge 108: Kein Herz für Pluto: Der wohlverdiente Zwergplanet Weiterführende Links WP: Pluto WP: Uranus (Planet) WP: Neptun (Planet) WP: Asteroidengürtel WP: Kuipergürtel WP: (15760) Albion WP: Zwergplanet WP: Michael E. Brown WP: Transpluto WP: Jane Luu WP: (136199) Eris WP: Nizza-Modell WP: Planet Neun WP: (90377) Sedna WP: Sedna (Göttin) WP: Herschel-Weltraumteleskop Quellen Fachartikel: Transneptunian Space (2021) Buch: Mike Brown – Wie ich Pluto zur Strecke brachte Fachartikel: Evidence for a Distant Giant Planet in the Solar System (2016) Fachartikel: New constraints on the location of P9 obtained with the INPOP19a planetary ephemeris (2020) Fachartikel: The Orbit of Planet Nine (2021) Fachartikel: Generation of Low-inclination, Neptune-crossing Trans-Neptunian Objects by Planet Nine (2024) Fachartikel: Irregular Moons Possibly Injected from the Outer Solar System by a Stellar Flyby (2024) Fachartikel: Trajectory of the stellar flyby that shaped the outer Solar System (2024) Episodenbild: Caltech/R. Hurt (IPAC)…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Von Gletschern und Gestirnen: Die Entdeckung der Milanković-Zyklen 1:07:17
1:07:17
Spill senere
Spill senere
Lister
Lik
Likt1:07:17
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Im Jahr 1914 wird in Dalj im Osten des heutigen Kroatiens ein Mann verhaftet. Er hatte in einem früheren Krieg als Soldat für das serbische Militär gekämpft und die Streitkräfte Österreich-Ungarns wollen ihn nun daran hindern, im kurz zuvor ausgebrochenen Weltkrieg zu kämpfen. Doch das hatte er ohnehin nicht vor: In seinem erzwungenen Exil in Budapest wird er in den kommenden vier Jahren fernab des Kriegsgeschehens eine Theorie ausarbeiten, die erstmals die Sphären des Himmels mit dem Klima der Erde verbinden wird. Er wird drei Phänomene entschlüsseln, die wir heute als Milanković-Zyklen kennen, benannt nach dem serbischen Mathematiker Milutin Milanković. Karl erzählt in dieser Podcastfolge, welches Problem Milanković zu lösen versuchte: Schon ein Jahrhundert zuvor hatten Geologen erkannt, dass das Klima der Welt nicht immer so gewesen war wie in der Gegenwart. Im Jahr 1837 gab der Schweizer Naturforscher Louis Agassiz deshalb bekannt, dass in grauer Vorzeit eine Eiszeit geherrscht haben müsse. Riesige Gletschermassen hätten sich nicht nur über den gesamten Alpenraum ausgebreitet, sondern auch weite Teile Europas bedeckt. In den folgenden Jahrzehnten erhärtete sich die Hypothese von Agassiz. Wissenschaftlerinnen und Wissenschaftler fanden heraus, dass es sogar mehrere Eiszeiten gegeben haben musste, die von Zeiten wärmeren Klimas unterbrochen waren, die unserer heutigen Welt glichen. Doch warum dieser Wechsel von Kalt- und Warmzeiten überhaupt stattfand, dafür gab es viele Hypothesen und nur wenig Konsens. Das Eiszeit-Problem war jahrzehntelang in der Welt, ohne dass die Wissenschaft einer Lösung näherkam. Von Anfang an waren Unregelmäßigkeiten der Erdbahn und andere astronomische Ursachen im Gespräch, aber bei den meisten Geologen nicht hoch im Kurs. Zu fern schien der Lauf der Planeten, zu unwahrscheinlich, dass sie die Kraft der Sonnenstrahlung und damit das Klima ausreichend stark verändern würden. Erst Milutin Milanković änderte diese Sichtweise: Er nutzte genauere astronomische Daten und die bekannten physikalische Gesetze seiner Zeit, um zu berechnen, wie die Sonne auf das Klima der Erde auf unterschiedlichen Breitengraden wirkt. Hatte dieser serbische Mathematiker endlich das Eiszeit-Problem gelöst? Weiterhören bei AstroGeo Folge 54: Als die Erde zu Eis erstarrte Folge 86: Das Ende der Dinosaurier: Massensterben im Frühling Weiterführende Links WP: Milutin Milanković WP: Milanković-Zyklen WP: Val de Bagnes WP: Jean-Pierre Perraudin WP: Louis Agassiz WP: Eiszeit WP: William Buckland WP: James Croll WP: Treibhauseffekt WP: Zyklus der Präzession WP: Schiefe der Ekliptik WP: Exzentrizität Quellen Fachbuch: John Imbrie & Katherine Palmer Imbrie: Ice Ages, Solving the Mystery, Harvard University Press (1979) Tagungsband: Berger et al.: NATO Advanced Research Workshop on Milankovitch and Climate (1984) Episodenbild: Gletscher Svínafellsjökull , Island; Foto: Karl Urban…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 AstroGeoPlänkel: Titanisches Leben und freie Planetenbahnen 54:54
54:54
Spill senere
Spill senere
Lister
Lik
Likt54:54
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Diese Folge beschäftigt sich mit eurem Feedback zu unseren Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht. Dieses Mal sprechen Karl und Franzi noch einmal ausgiebig über mögliches Leben auf dem Saturnmond Titan. Denn netterweise haben sich mehrere Hörende gemeldet, die sich mit den chemischen Zutaten des Lebens auskennen. Es geht also um Methan als Lösungsmittel, polare Verbindungen, links- und rechtsdrehende Moleküle und Dreifachbindungen. Um bei alledem nicht zu sehr verloren zu gehen, erklärt uns die Chemikerin Martina Preiner, was genau mögliches Leben auf dem Titan begünstigen könnte oder auch nicht. Danach geht es um Pluto, der seinen Planetenstatus laut Franzi zwar richtigerweise verlor, den viele unserer Hörenden aber weiter für sehr liebenswert halten – keine Sorge, wir auch! Wir sprechen darüber, was es bedeutet, wenn ein Planet seine Bahn aufgeräumt hat und warum der Neptun weiterhin als Planet gilt, obwohl Pluto seine Bahn kreuzt (Spoiler: Es kommt auf die Größe an!). Das erklärt auch, warum auf den Bahnen etlicher Planeten kleine Trojaner-Asteroiden kreisen dürfen, ohne dass Astronomen an deren Planetenstatus rütteln. Wir sprechen auch darüber, warum die Entdeckerin des festen inneren Erdkerns Inge Lehmann ( AstroGeo Folge 48 ) nicht bekannter ist – und warum ein populärer Roman über sie zwar auf dänisch, aber noch immer nicht auf englisch oder deutsch übersetzt wurde. Der Verlag des Buches Den inderste kerne freut sich sicher über derartige Vorschläge. Zuletzt geht es um Hörerinnen, die sich vom AstroGeo-Podcast inspirieren haben lassen – und deshalb nebenher ein Studium angefangen haben. Es geht um Franzis Hobby namens Magic und die Freude, die das bei manchen Hörern hervorruft. Und schließlich sprechen wir darüber, wie wir uns gegenseitig unsere Geschichten zwischen Weltall und Erde erzählen – und warum. Weiterhören bei AstroGeo Folge 104: Riffsterben und Klimachaos im Devon: Sind die Bäume schuld? Folge 107: Über den Dünen des Saturnmonds Titan: Lebt dort etwas? Folge 108: Kein Herz für Pluto: der wohlverdiente Zwergplanet Folge 95: Von Tümpeln zu Tiefseevulkanen: Wo entstand das Leben? Folge 48: Der innere Kern – warum hat die Welt Inge Lehmann vergessen? Weiterführende Links Podcast: The Great Simplification YouTube: Christiaan Huygens WhatIf: What would happen if you tried to fly a normal Earth airplane above different Solar System bodies? MPI für terrestrische Mikrobiologie: Gruppe Martina Preiner 37C3, Michael Büker: How Many Planets in Our Solar System? Glad You Asked! Episodenbild: NASA JPL/Caltech…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Kein Herz für Pluto: Der wohlverdiente Zwergplanet 1:08:14
1:08:14
Spill senere
Spill senere
Lister
Lik
Likt1:08:14
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Wie viele Planeten hat das Sonnensystem für euch? Lange Zeit waren lediglich sechs Planeten bekannt. Im 18. Jahrhundert entdeckte dann William Herschel den siebten Planeten Uranus und das auch eher zufällig. Die etwas seltsame Umlaufbahn des Uranus um die Sonne verriet schließlich, dass da draußen noch ein achter Planet sein musste: Neptun. Und die Frage lautete: Kommt dann noch ein weiterer Planet oder ist nach Neptun endgültig Schluss? Rund 75 Jahre lang lautete die Antwort auf diese Frage: Da kommt noch ein neunter Planet – Pluto! Zwar war nach dessen Entdeckung schnell klar, dass der nicht so recht zu den anderen Planeten im Sonnensystem passen wollte: Er ist weder ein echter Gesteinsplanet noch ein Gasriese, sondern eher eine winzige Kugel weit draußen im All, die die Sonne auf einer Umlaufbahn umrundet, die aus einigen Gründen äußerst seltsam ist. Schnell kamen Zweifel an Plutos Status als neunter Planet auf. Aber irgendwie hatte man ihn auch liebgewonnen, den einsamen Wanderer jenseits des Neptuns. In dieser Folge hat Franzi kein Herz für Pluto – zumindest nicht als Planet. Sie erzählt die Geschichte, wie Pluto zunächst als neunter Planet im Sonnensystem gefeiert wurde, nur um schließlich in einer kontroversen Abstimmung im Jahr 2006 zum Zwergplaneten degradiert zu werden – und sie erzählt, was derjenige Astronom entdeckt hat, der auszog, um einen ganz neuen, zehnten Planeten zu entdecken und stattdessen als „Plutokiller“ bekannt wurde. Weiterhören bei AstroGeo Folge 50: Planet der Frühstücksflocken Folge 62: Plutos Herz und vier Sorten Eis Folge 105: Heliozentrisch: Wie wir unseren Platz im Kosmos fanden Weiterführende Links WP: Pluto WP: Uranus (Planet) WP: Neptun (Planet) WP: Percival Lowell WP: Clyde Tombaugh WP: Asteroidengürtel WP: Kuipergürtel WP: (15760) Albion WP: Zwergplanet WP: Michael E. Brown WP: Percival Lowell WP: Transpluto WP: (1) Ceres WP: Jane Luu WP: Chad Trujillo WP: (50000) Quaoar WP: (136199) Eris Quellen Buch: Mike Brown – Wie ich Pluto zur Strecke brachte Artikel: Willy Ley – The Demotion of Pluto (1956, via archive.org) Fachartikel: The Search for the Ninth Planet, Pluto (1946) Episodenbild: NASA/JPL-Caltech…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Über den Dünen des Saturnmonds Titan: Lebt dort etwas? 1:44:53
1:44:53
Spill senere
Spill senere
Lister
Lik
Likt1:44:53
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Im Jahr 1655 entdeckt der niederländische Astronom Christiaan Huygens mit seinem selbstgebauten Teleskop einen Lichtpunkt, der den Planeten Saturn in 16 Tagen einmal umrundet. Er wird später Titan getauft. Es dauerte mehrere Jahrhunderte, bis klar wurde, was der zweitgrößte Mond des Sonnensystems verbirgt: Erst Raumsonden lieferten Details seiner umwölkten Atmosphäre und sogar erste Fotos seiner rätselhaften Oberfläche. Gerade bereitet die NASA eine neue Forschungsreise zu ihm vor. Karl erzählt in dieser Folge, warum der Titan so besonders ist. Zwar ist es auf ihm mit durchschnittlich -179 °C bestialisch kalt. Doch gleichzeitig gluckern auf ihm Flüsse aus flüssigem Methan, Ethan und Stickstoff. Sie graben tiefe Täler und speisen gigantische Seen. Aus der Atmosphäre, die deutlich dichter und massiver als die Erdatmosphäre ist, rieseln währenddessen organische Moleküle. Es scheinen die wichtigsten Zutaten beisammen zu sein, um auf Titan eine Form von Leben entstehen zu lassen. Nach der Marssonde Ingeniuity ist Dragonfly erst der zweite Versuch der NASA, in einer außerirdischen Atmosphäre mit einem Helikopter zu fliegen. Doch anders als die dünne Luft auf dem Mars ist der Titan bestens dafür geeignet: Die Anziehungskraft ist gering, während die Luft auf dem Saturnmond dichter als die der Erde ist und dadurch starken Auftrieb verleiht. Die Forschungssonde kann deshalb eine Radionukludbatterie und sogar ein Massenspektrometer transportieren, um in einer mehrjährigen Mission dem möglichen fremden Leben auf die Schliche zu kommen. Der Titan in Falschfarben im Infrarotbereich, dadurch zeigt sich ein Glitzern der nördlichen Seen Längsdünen auf Titan Die Region Shangri-La liegt auf Höhe des Äquators und fällt im Radar durch dunkle Kohlenwasserstoffe auf Landschaft des Titan, aufgenommen von der ESA-Sonde Huygens im Landeanflug Nach der Landung von Huygens: gerundete Brocken aus hart gefrorenem Wassereis Weiterhören bei AstroGeo Folge 46: Europa – der erste Exo-Ozean Folge 70: Mars-Musik: Eine klangliche Expedition Folge 92: Vulkan-Wunderwelt: Wieso brodelt Jupiters Mond Io? Folge 95: Von Tümpeln zu Tiefseevulkanen – wo entstand das Leben? Weiterführende Links WP: Saturn WP: Titan WP: Christiaan Huygens WP: Josep Comas i Solà WP: Randverdunkelung WP: Gerard Kuiper ESA: Cassini-Huygens WP: Cassini-Huygens NASA: Cassini Spacecraft Finds Ocean May Exist Beneath Titan’s Crust WP: Längsdüne WP: Lakes on Titan MIT: Jason Soderblom WP: Tripelpunkt WP: Dragonfly NASA: Dragonfly NASA Awards Launch Services Contract for Dragonfly Mission Quellen Fachartikel: Sotin, Kalousová & Tobie: Titan’s Interior Structure and Dynamics After the Cassini-Huygens Mission, Annual Reviews (2021) Fachartikel: Christopher McKay: Titan as the Abode of Life, Life (2016) Fachartikel: MacKenzie et al.: Titan: Earth-like on the Outside, Ocean World on the Inside, The Planetary Science Journal (2021) Fachartikel: Wolf & Toon: Fractal Organic Hazes Provided an Ultraviolet Shield for Early Earth, Science (2010) Fachartikel: Barnes et al.: Science Goals and Objectives for the Dragonfly Titan Rotorcraft Relocatable Lander, The Planetary Science Journal (2021) Fachartikel: Lorenz et al.: Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan, Johns Hopkins APL Technical Digest (2018) Fachvortrag: Yu et al.: Drill for Acquisition of Complex Organics for Dragonfly Mission, 51st Lunar and and Planetary Science Conference (2020) Episodenbild: NASA/JPL-Caltech…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 AstroGeoPlänkel: Vom Devon zur Silbernase des Tycho Brahe 57:22
57:22
Spill senere
Spill senere
Lister
Lik
Likt57:22
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Diese Folge beschäftigt sich mit dem Feedback zu unseren Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht. Dieses Mal sprechen wir noch einmal ausgiebig über das Massensterben im Devon, an dem vielleicht die Bäume schuld waren. Es geht darum, ob zu diesem erdgeschichtlichen Ereignis eigentlich zu wenig oder hierzulande sogar schon zu viel geforscht wurde. Wir sprechen auch über die Suche nach der stellaren Parallaxe, die über Jahrtausende viele Astronominnen und Astronomen beschäftigt hat. Und wir gehen intensiv auf das Feedback unserer Hörerinnen ein, das erfreulich häufig bei uns eintrifft, wenn auch tendenziell auf anderen Wegen als das unserer männlichen Hörer. Weiterhören bei AstroGeo Folge 94: Das Universum und sein Urknall – der Anfang des Anfangs Folge 98: Das Erbe des Urknalls – wie die Materie in unser Universum kam Folge 102: Das Ende des Anfangs – was vom Urknall übrigblieb Folge 104: Riffsterben und Klimachaos im Devon – sind die Bäume schuld? Folge 105: Heliozentrisch: Wie wir unseren Platz im Kosmos fanden Weiterführende Links Goethe-Podcast mit Thomas Schmuck und Marcus Anhäuser WP: Flutbasalt WP: Tiktaalik WP: Shoemaker-Levy 9 Buch: Alan W. Hirshfeld: Parallax: The Race to Measure the Cosmos (2001) Sternengeschichten: Eine neue Astronomie…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Heliozentrisch: Wie wir unseren Platz im Kosmos fanden 1:04:48
1:04:48
Spill senere
Spill senere
Lister
Lik
Likt1:04:48
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Und sie bewegt sich doch: Diese geflügelten Worte werden Galileo Galilei zugeschrieben. Ob er sie je geäußert hat, ist zwar fraglich – doch dass er ihnen zugestimmt hätte, steht außer Zweifel. „Sie“ ist unsere Erde. Jahrtausendelang hatte das geozentrische Weltbild sie starr und unbewegt in das Zentrum des Universums gesetzt: Alle übrigen Planeten, die Sonne, der Mond und der Fixsternhimmel sollten sich um sie drehen. Galileo Galilei hingegen hat als früher Verfechter ein heliozentrisches Weltbild vertreten: eines, dass die Erde von ihrem Ehrenplatz im Mittelpunkt des Universums schubst und an diese Stelle die Sonne setzt. Demnach würde sich die Erde um die Sonne drehen – und sich eben doch bewegen. Heutzutage wissen wir, dass Galilei und andere frühe Vertreter dieses Weltbilds Recht behalten sollten – nur: Wie konnten sie überhaupt beweisen, dass sich die Erde um die Sonne dreht? In dieser Folge von AstroGeo erzählt Franzi die Geschichte einer Suche, die Jahrtausende gedauert hat: die nach der stellaren Parallaxe. Diese scheinbare Bewegung von Sternen im Laufe eines Erdjahres ist nicht nur ein Beleg dafür, dass sich die Erde um die Sonne dreht – sie ist bis heute die einzige Möglichkeit, die Entfernung zu Sternen direkt zu vermessen und damit die Grundlage so ziemlich all unseres Wissens über den Weltraum und unser Universum. Weiterhören bei Astrogeo Folge 38: 1,8 Milliarden Sterne Weiterführende Links WP: Stereoskopisches Sehen WP: Aristarchos von Samos WP: Planet WP: Archimedes WP: Geozentrisches Weltbild WP: Aristoteles WP: Parallaxe WP: Claudius Ptolemäus WP: Nikolaus Kopernikus WP: Planetenschleife WP: Johannes Kepler WP: Heliozentrisches Weltbild WP: Galileo Galilei WP: James Bradley WP: Aberration WP: Friedrich Wilhelm Bessel WP: Standardkerze WP: Cosmic Distance Ladder (engl.) WP: Gaia (Raumsonde) Empfehlung: Bild der Wissenschaft Podcast Quellen Alan W. Hirshfeld: Parallax: The Race to Measure the Cosmos (2001) Episodenbild: ESA/Gaia/DPAC ; CC BY-SA 3.0 IGO . Acknowledgement: A. Brown, S. Jordan, T. Roegiers, X. Luria, E. Masana, T. Prusti and A. Moitinho…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Riffsterben und Klimachaos im Devon: Sind die Bäume schuld? 1:07:45
1:07:45
Spill senere
Spill senere
Lister
Lik
Likt1:07:45
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Auf einer Wanderung durch den Harz entdeckt der Geologe und Botaniker Friedrich Adolph Roemer im Jahr 1850 eine merkwürdige Gesteinsfolge. Es sind dicke graue Kalkbänke, die durch viel dünnere und schwarze Kalklagen durchbrochen sind. Kalkstein ist fast nie schwarz – und ist er es doch, spricht seine Färbung für eine Katastrophe. Karl erzählt in dieser Folge von dem wohl merkwürdigsten Massensterben der Erdgeschichte. Bis heute haben Fachleute nur ein lückenhaftes Bild davon, was damals, vor rund 372 Millionen Jahren, begann. Sie wissen, dass damals weltweit die Meeresriffe starben und dass das Klima über viele Millionen Jahre äußerst instabil war. Viele Ursachen sind dafür im Gespräch – aber am wahrscheinlichsten scheint der Erfolg einer Gruppe von Organismen, die wir heute mit vielen Dingen in Verbindung bringen, aber nicht mit einem Weltuntergang: Es sind Pflanzen – und darunter vor allem die Bäume. Die Geschichte rund um das Massensterben im späten Devon ist komplex, weshalb es insgesamt acht Merkwürdigkeiten zu erzählen gibt. Und obwohl uns diese Zeit fremd erscheint, hat eine Merkwürdigkeit auch mit uns zu tun. Die Landschaft im späten Devon: Während sich an Land die Pflanzen verbreiteten, lebten im Meer urtümliche Quastenflosser (Vordergrund links) und der Raubfisch Dunkleosteus (rechts), der über acht Meter lang werden konnte (Mikhail Shekhanov). Weiterhören bei AstroGeo Folge 101: Tödliche Sterne – wenn Explosionen ein Massensterben auslösen Folge 86: Das Ende der Dinosaurier: Massensterben im Frühling Folge 64: Massensterben im Treibhaus Weiterführende Links WP: Johann Wolfgang von Goethe WP: Harz WP: Pangäa WP: Variskische Gebirgsbildung WP: Friedrich Adolph Roemer WP: Devon WP: Kellwassertal WP: Kellwasser-Ereignis WP: Massenaussterben WP: Hangenberg-Ereignis WP: Wiljuiplateau WP: Riff WP: Stromatoporen WP: Brachiopoden WP: Kambrische Radiation WP: Ordovizium WP: Peter Ward Hörempfehlung: Podcast „Goethe, Natur und Geist“ Quellen Fachbuch: Michael Benton: Extinctions – How Life Survives, Adapts and Evolves , Thames & Hudson (2023) Fachbuch: Peter Brannon: The Ends of the World , Oneworld Publications (2017) Fachbuch: Peter Ward & Joe Kirschvink: A New History of Life , Bloomsbury (2015) Fachartikel: Tomkins, Martin & Cawood: Evidence suggesting that earth had a ring in the Ordovician, Earth and Planetary Science Letters, 2024 Fachartikel: Algeo & Shen: Theory and classification of mass extinction causation, National Science Review (2023) Fachartikel: Carmichael et al.: Paleogeography and paleoenvironments of the Late Devonian Kellwasser event: A review of its sedimentological and geochemical expression, Global and Planetary Change (2019) Fachartikel: Keller: Impacts, volcanism and mass extinction: random coincidence or cause and effect?, Australian Journal of Earth Sciences (2005) Hattenbach: Tödliches Licht explodierender Sterne , Spektrum der Wissenschaft (14.03.2024) Episodenbild: Fiddlehead in Macro Shot Photography / Pexels…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 AstroGeoPlänkel: Vom Urknall bis zum Ende der Menschheit 59:32
59:32
Spill senere
Spill senere
Lister
Lik
Likt59:32
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! In dieser Episode geht es wieder um euer Feedback zu den Geschichten: Das AstroGeoPlänkel ist eine regelmäßige Sonderfolge, in der es um eure Fragen, Kommentare, Anmerkungen und Wünsche geht. Dieses Mal sprechen wir über das Ende des Urknalls und die Grenzen der Vorstellung. Wir stellen fest, dass die Raumfahrt die Atmosphäre nicht nur theoretisch, sondern messbar verunreinigt. Wir sprechen über die Unzulänglichkeiten der Nobelpreise und darüber, welche Themen wir hier lieber nicht behandeln wollen. Weiterhören bei AstroGeo Folge 99: Aluminium im Himmel – Wie Satelliten die Ozonschicht gefährden Folge 100: AstroGeoPlänkel – Universum, Satelliten und Eichhörnchen Folge 101: Tödliche Sterne – wenn Explosionen ein Massensterben auslösen Folge 102: Das Ende des Anfangs – was vom Urknall übrigblieb Weiterführende Links Fachartikel: Murphy et al.: Metals from spacecraft reentry in stratospheric aerosol particles, PNAS (2023) WP: Dragonfly WP: Quantengravitation Alles gesagt Podcast: Wie lebt es sich im All, Matthias Maurer? WP: Ada Yonath Buch: Friedman & Kaufmann – Universe , McMillan Learning (2019) YouTube: Stanford Lecture Collection Cosmology WP: Die Welt ohne uns (Buch) WP: Voyager Golden Record WP: Blockuniversum Bildquelle: K. Urban / ChatGPT; ESA and the Planck Collaboration…
A
AstroGeo - Geschichten aus Astronomie und Geologie


1 Das Ende des Anfangs: Was vom Urknall übrigblieb 1:00:18
1:00:18
Spill senere
Spill senere
Lister
Lik
Likt1:00:18
Für AstroGeo recherchieren wir regelmäßig eine ganze Geschichte. Nur wenn du uns finanziell unterstützt, bleibt der Podcast weiter kostenfrei. Danke! Es war einmal: der Urknall. Nachdem unser Universum wohl irgendwie entstanden war und Wissenschaftlerinnen und Wissenschaftler herausgefunden hatten, dass es überhaupt einen Anfang gegeben hat, fanden sie auch heraus, dass die allerersten Elemente im Universum kurz nach dem Urknall entstanden sind, vor allem Wasserstoff und Helium. Doch wie ging es dann weiter? Nun folgt das Ende des Anfangs: Es half dabei, dem Urknall-Modell zum wissenschaftlichen Durchbruch zu verhelfen. Dabei handelt es sich um ein Überbleibsel des Urknalls, das bis heute den ganzen Kosmos durchdringt – und dessen Entdeckung absoluter Zufall war: die kosmische Mikrowellenhintergrundstrahlung. Weiterhören bei AstroGeo Folge 94: Das Universum und sein Urknall – der Anfang des Anfangs Folge 98: Das Erbe des Urknalls: Wie die Materie in unser Universum kam Weiterführende Links WP: Georges Lemaître WP: Urknall WP: Ralph Alpher WP: Robert Herman WP: Alpher-Bethe-Gamow-Theorie WP: George Gamow WP: Hintergrundstrahlung WP: Schwarzer Körper WP: Wiensches Strahlungsgesetz WP: Robert Henry Dicke WP: Arno Penzias WP: Robert Woodrow Wilson WP: James Peebles spektrum.de: Das Universum, noch warm vom Urknall (2022) Hörempfehlung: Podcast „Jetzt mal ganz in Ruhe“ Quellen Buch: Joseph D’Agnese – The Scientist and the Sociopath (2014) Buch: Ralph Alpher, Robert Herman – Genesis of the Big Bang (2001) Buch: Helge Kragh – Cosmology and Controversy: The Historical Development of Two Theories of the Universe (1996) Buch: Conceptions of Cosmos: From Myths to the Accelerating Universe: A History of Cosmology (2006) Blog-Artikel: My Unpublished Interview with Astronomer Vera Rubin (2017) Fachartikel: The Evolution of the Universe (1948) Fachartikel: Evolution of the Universe (1948) Fachartikel: Remarks on the Evolution of the Expanding Universe (1949) Fachartikel: A Measurement of Excess Antenna Temperature at 4080 Mc/s (1965) Fachartikel: Cosmic Black-Body Radiation (1965) Episodenbild: ESA and the Planck Collaboration…
Velkommen til Player FM!
Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.