Artwork

Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Towards Monosemanticity: Decomposing Language Models With Dictionary Learning

8:53
 
Del
 

Manage episode 424744796 series 3498845
Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.
Mechanistic interpretability seeks to understand neural networks by breaking them into components that are more easily understood than the whole. By understanding the function of each component, and how they interact, we hope to be able to reason about the behavior of the entire network. The first step in that program is to identify the correct components to analyze.
Unfortunately, the most natural computational unit of the neural network – the neuron itself – turns out not to be a natural unit for human understanding. This is because many neurons are polysemantic: they respond to mixtures of seemingly unrelated inputs. In the vision model Inception v1, a single neuron responds to faces of cats and fronts of cars . In a small language model we discuss in this paper, a single neuron responds to a mixture of academic citations, English dialogue, HTTP requests, and Korean text. Polysemanticity makes it difficult to reason about the behavior of the network in terms of the activity of individual neurons.
Source:
https://transformer-circuits.pub/2023/monosemantic-features/index.html
Narrated for AI Safety Fundamentals by Perrin Walker

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Towards Monosemanticity: Decomposing Language Models With Dictionary Learning (00:00:00)

2. Summary of Results (00:05:50)

80 episoder

Artwork
iconDel
 
Manage episode 424744796 series 3498845
Innhold levert av BlueDot Impact. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av BlueDot Impact eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Using a sparse autoencoder, we extract a large number of interpretable features from a one-layer transformer.
Mechanistic interpretability seeks to understand neural networks by breaking them into components that are more easily understood than the whole. By understanding the function of each component, and how they interact, we hope to be able to reason about the behavior of the entire network. The first step in that program is to identify the correct components to analyze.
Unfortunately, the most natural computational unit of the neural network – the neuron itself – turns out not to be a natural unit for human understanding. This is because many neurons are polysemantic: they respond to mixtures of seemingly unrelated inputs. In the vision model Inception v1, a single neuron responds to faces of cats and fronts of cars . In a small language model we discuss in this paper, a single neuron responds to a mixture of academic citations, English dialogue, HTTP requests, and Korean text. Polysemanticity makes it difficult to reason about the behavior of the network in terms of the activity of individual neurons.
Source:
https://transformer-circuits.pub/2023/monosemantic-features/index.html
Narrated for AI Safety Fundamentals by Perrin Walker

A podcast by BlueDot Impact.
Learn more on the AI Safety Fundamentals website.

  continue reading

Kapitler

1. Towards Monosemanticity: Decomposing Language Models With Dictionary Learning (00:00:00)

2. Summary of Results (00:05:50)

80 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett