58: Bringing Curvy Back (Gaussian Curvature)


Manage episode 286459377 series 2462838
Av Breaking Math Podcast oppdaget av Player FM og vårt samfunn — opphavsrett er eid av utgiveren, ikke Plaer FM, og lyd streames direkte fra deres servere. Trykk på Abonner knappen for å spore oppdateringer i Player FM, eller lim inn feed URLen til andre podcast apper.

In introductory geometry classes, many of the objects dealt with can be considered 'elementary' in nature; things like tetrahedrons, spheres, cylinders, planes, triangles, lines, and other such concepts are common in these classes. However, we often have the need to describe more complex objects. These objects can often be quite organic, or even abstract in shape, and include things like spirals, flowery shapes, and other curved surfaces. These are often described better by differential geometry as opposed to the more elementary classical geometry. One helpful metric in describing these objects is how they are curved around a certain point. So how is curvature defined mathematically? What is the difference between negative and positive curvature? And what can Gauss' Theorema Egregium teach us about eating pizza?
This episode distributed under a Creative Commons Attribution ShareAlike 4.0 International License. For more information, go to creativecommons.org
Visit our sponsor today at Brilliant.org/BreakingMath for 20% off their annual membership! Learn hands-on with Brilliant.
[Featuring: Sofía Baca, Meryl Flaherty]

--- This episode is sponsored by · Anchor: The easiest way to make a podcast. https://anchor.fm/app Support this podcast: https://anchor.fm/breakingmathpodcast/support

101 episoder