Artwork

Innhold levert av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Decadal Creep-rate Changes Along the Hayward Fault

1:00:00
 
Del
 

Manage episode 428544109 series 1399341
Innhold levert av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Roland Burgmann, University of California Berkeley

Decadal changes in aseismic fault slip rate on partially coupled faults reflect long-term changes in fault loading and/or fault-frictional properties that can be related to earthquake cycle processes. We consider constraints on aseismic fault slip rates from historical alignment array measurements, InSAR measurements since 1992, and repeating micro-earthquakes since 1984 along the Hayward fault, California. During recent decades, creep rates consistently increased along the whole Hayward fault. Accelerated fault creep associated with M > 4 earthquakes on the northern Hayward fault in 2007, 2010 and 2018 may explain some of the creep-rate accelerations, but the acceleration on the remaining Hayward fault does not seem to be directly tied to small-scale afterslip transients. Dynamic models of partially coupled faults through earthquake cycles suggest non-stationary asperities that continue to decrease in size late in the earthquake cycle. We explore such asperity erosion models to explain the apparent decadal acceleration of aseismic Hayward fault slip.

  continue reading

20 episoder

Artwork
iconDel
 
Manage episode 428544109 series 1399341
Innhold levert av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av USGS, Menlo Park (Scott Haefner) and U.S. Geological Survey eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Roland Burgmann, University of California Berkeley

Decadal changes in aseismic fault slip rate on partially coupled faults reflect long-term changes in fault loading and/or fault-frictional properties that can be related to earthquake cycle processes. We consider constraints on aseismic fault slip rates from historical alignment array measurements, InSAR measurements since 1992, and repeating micro-earthquakes since 1984 along the Hayward fault, California. During recent decades, creep rates consistently increased along the whole Hayward fault. Accelerated fault creep associated with M > 4 earthquakes on the northern Hayward fault in 2007, 2010 and 2018 may explain some of the creep-rate accelerations, but the acceleration on the remaining Hayward fault does not seem to be directly tied to small-scale afterslip transients. Dynamic models of partially coupled faults through earthquake cycles suggest non-stationary asperities that continue to decrease in size late in the earthquake cycle. We explore such asperity erosion models to explain the apparent decadal acceleration of aseismic Hayward fault slip.

  continue reading

20 episoder

所有剧集

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett