Artwork

Innhold levert av Machine Learning Archives - Software Engineering Daily. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Archives - Software Engineering Daily eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Reinforcement Learning and Robotics with Nathan Lambert

55:03
 
Del
 

Manage episode 283271622 series 1433944
Innhold levert av Machine Learning Archives - Software Engineering Daily. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Archives - Software Engineering Daily eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Reinforcement learning is a paradigm in machine learning that uses incentives- or “reinforcement”- to drive learning. The learner is conceptualized as an intelligent agent working within a system of rewards and penalties in order to solve a novel problem. The agent is designed to maximize rewards while pursuing a solution by trial-and-error.

Programming a system to respond to the complex and unpredictable “real world” is one of the principal challenges in robotics engineering. One field which is finding new applications for reinforcement learning is the study of MEMS devices- robots or other electronic devices built at the micrometer scale. The use of reinforcement learning in microscopic devices poses a challenging engineering problem, due to constraints with power usage and computational power.

Nathan Lambert is a PhD student at Berkeley who works with the Berkeley Autonomous Microsystems Lab. He has also worked at Facebook AI Research and Tesla. He joins the show today to talk about the application of reinforcement learning to robotics and how deep learning is changing the MEMS device landscape.

Sponsorship inquiries: [email protected]

The post Reinforcement Learning and Robotics with Nathan Lambert appeared first on Software Engineering Daily.

  continue reading

176 episoder

Artwork
iconDel
 
Manage episode 283271622 series 1433944
Innhold levert av Machine Learning Archives - Software Engineering Daily. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Archives - Software Engineering Daily eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Reinforcement learning is a paradigm in machine learning that uses incentives- or “reinforcement”- to drive learning. The learner is conceptualized as an intelligent agent working within a system of rewards and penalties in order to solve a novel problem. The agent is designed to maximize rewards while pursuing a solution by trial-and-error.

Programming a system to respond to the complex and unpredictable “real world” is one of the principal challenges in robotics engineering. One field which is finding new applications for reinforcement learning is the study of MEMS devices- robots or other electronic devices built at the micrometer scale. The use of reinforcement learning in microscopic devices poses a challenging engineering problem, due to constraints with power usage and computational power.

Nathan Lambert is a PhD student at Berkeley who works with the Berkeley Autonomous Microsystems Lab. He has also worked at Facebook AI Research and Tesla. He joins the show today to talk about the application of reinforcement learning to robotics and how deep learning is changing the MEMS device landscape.

Sponsorship inquiries: [email protected]

The post Reinforcement Learning and Robotics with Nathan Lambert appeared first on Software Engineering Daily.

  continue reading

176 episoder

Todos los episodios

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill