Artwork

Innhold levert av Machine Learning Street Talk (MLST). Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Street Talk (MLST) eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Can we build a generalist agent? Dr. Minqi Jiang and Dr. Marc Rigter

1:57:11
 
Del
 

Manage episode 407961751 series 2803422
Innhold levert av Machine Learning Street Talk (MLST). Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Street Talk (MLST) eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Dr. Minqi Jiang and Dr. Marc Rigter explain an innovative new method to make the intelligence of agents more general-purpose by training them to learn many worlds before their usual goal-directed training, which we call "reinforcement learning". Their new paper is called "Reward-free curricula for training robust world models" https://arxiv.org/pdf/2306.09205.pdf https://twitter.com/MinqiJiang https://twitter.com/MarcRigter Interviewer: Dr. Tim Scarfe Please support us on Patreon, Tim is now doing MLST full-time and taking a massive financial hit. If you love MLST and want this to continue, please show your support! In return you get access to shows very early and private discord and networking. https://patreon.com/mlst We are also looking for show sponsors, please get in touch if interested mlstreettalk at gmail. MLST Discord: https://discord.gg/machine-learning-street-talk-mlst-937356144060530778

  continue reading

198 episoder

Artwork
iconDel
 
Manage episode 407961751 series 2803422
Innhold levert av Machine Learning Street Talk (MLST). Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Machine Learning Street Talk (MLST) eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Dr. Minqi Jiang and Dr. Marc Rigter explain an innovative new method to make the intelligence of agents more general-purpose by training them to learn many worlds before their usual goal-directed training, which we call "reinforcement learning". Their new paper is called "Reward-free curricula for training robust world models" https://arxiv.org/pdf/2306.09205.pdf https://twitter.com/MinqiJiang https://twitter.com/MarcRigter Interviewer: Dr. Tim Scarfe Please support us on Patreon, Tim is now doing MLST full-time and taking a massive financial hit. If you love MLST and want this to continue, please show your support! In return you get access to shows very early and private discord and networking. https://patreon.com/mlst We are also looking for show sponsors, please get in touch if interested mlstreettalk at gmail. MLST Discord: https://discord.gg/machine-learning-street-talk-mlst-937356144060530778

  continue reading

198 episoder

Усі епізоди

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill