Artwork

Innhold levert av HackerNoon. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av HackerNoon eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Developing a Natural Language Understanding Model to Characterize Cable News Bias

4:30
 
Del
 

Manage episode 419074984 series 3474160
Innhold levert av HackerNoon. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av HackerNoon eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 episoder

Artwork
iconDel
 
Manage episode 419074984 series 3474160
Innhold levert av HackerNoon. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av HackerNoon eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

This story was originally published on HackerNoon at: https://hackernoon.com/developing-a-natural-language-understanding-model-to-characterize-cable-news-bias.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization.
Check more stories related to media at: https://hackernoon.com/c/media. You can also check exclusive content about #media, #media-bias-analysis, #media-bias-in-the-usa, #cable-news-bias, #stance-analysis, #natural-language-processing, #political-polarization, #bias-in-the-news, and more.
This story was written by: @mediabias. Learn more about this writer by checking @mediabias's about page, and for more stories, please visit hackernoon.com.
The increasing trend of political polarization in the U.S. is reflected in media consumption patterns that indicate partisan polarization. We develop an unsupervised machine learning method to characterize the bias of cable news programs without any human input. This method relies on the analysis of what topics are mentioned through Named Entity Recognition and how those topics are discussed through Stance Analysis.

  continue reading

166 episoder

Tous les épisodes

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill