Artwork

Innhold levert av Zeta Alpha. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Zeta Alpha eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Transformer Memory as a Differentiable Search Index: memorizing thousands of random doc ids works!?

1:01:40
 
Del
 

Manage episode 355037188 series 3446693
Innhold levert av Zeta Alpha. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Zeta Alpha eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Andrew Yates and Sergi Castella discuss the paper titled "Transformer Memory as a Differentiable Search Index" by Yi Tay et al at Google. This work proposes a new approach to document retrieval in which document ids are memorized by a transformer during training (or "indexing") and for retrieval, a query is fed to the model, which then generates autoregressively relevant doc ids for that query.

Paper: https://arxiv.org/abs/2202.06991

Timestamps:

00:00 Intro: Transformer memory as a Differentiable Search Index (DSI)

01:15 The gist of the paper, motivation

4:20 Related work: Autoregressive Entity Linking

7:38 What is an index? Conventional vs. "differentiable"

10:20 Indexing and Retrieval definitions in the context of the DSI

12:40 Learning representations for documents

17:20 How to represent document ids: atomic, string, semantically relevant

22:00 Zero-shot vs. finetuned settings

24:10 Datasets and baselines

27:08 Dinetuned results

36:40 Zero-shot results

43:50 Ablation results

47:15 Where could this model be useds?

52:00 Is memory efficiency a fundamental problem of this approach?

55:14 What about semantically relevant doc ids?

60:30 Closing remarks

Contact: castella@zeta-alpha.com

  continue reading

21 episoder

Artwork
iconDel
 
Manage episode 355037188 series 3446693
Innhold levert av Zeta Alpha. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Zeta Alpha eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Andrew Yates and Sergi Castella discuss the paper titled "Transformer Memory as a Differentiable Search Index" by Yi Tay et al at Google. This work proposes a new approach to document retrieval in which document ids are memorized by a transformer during training (or "indexing") and for retrieval, a query is fed to the model, which then generates autoregressively relevant doc ids for that query.

Paper: https://arxiv.org/abs/2202.06991

Timestamps:

00:00 Intro: Transformer memory as a Differentiable Search Index (DSI)

01:15 The gist of the paper, motivation

4:20 Related work: Autoregressive Entity Linking

7:38 What is an index? Conventional vs. "differentiable"

10:20 Indexing and Retrieval definitions in the context of the DSI

12:40 Learning representations for documents

17:20 How to represent document ids: atomic, string, semantically relevant

22:00 Zero-shot vs. finetuned settings

24:10 Datasets and baselines

27:08 Dinetuned results

36:40 Zero-shot results

43:50 Ablation results

47:15 Where could this model be useds?

52:00 Is memory efficiency a fundamental problem of this approach?

55:14 What about semantically relevant doc ids?

60:30 Closing remarks

Contact: castella@zeta-alpha.com

  continue reading

21 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill