Artwork

Innhold levert av Changelog Media. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Changelog Media eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Metrics Driven Development

42:14
 
Del
 

Manage episode 436930184 series 2385063
Innhold levert av Changelog Media. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Changelog Media eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Kapitler

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

295 episoder

Artwork
iconDel
 
Manage episode 436930184 series 2385063
Innhold levert av Changelog Media. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Changelog Media eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

How do you systematically measure, optimize, and improve the performance of LLM applications (like those powered by RAG or tool use)? Ragas is an open source effort that has been trying to answer this question comprehensively, and they are promoting a “Metrics Driven Development” approach. Shahul from Ragas joins us to discuss Ragas in this episode, and we dig into specific metrics, the difference between benchmarking models and evaluating LLM apps, generating synthetic test data and more.

Join the discussion

Changelog++ members save 5 minutes on this episode because they made the ads disappear. Join today!

Sponsors:

  • Assembly AI – Turn voice data into summaries with AssemblyAI’s leading Speech AI models. Built by AI experts, their Speech AI models include accurate speech-to-text for voice data (such as calls, virtual meetings, and podcasts), speaker detection, sentiment analysis, chapter detection, PII redaction, and more.

Featuring:

Show Notes:

Something missing or broken? PRs welcome!

  continue reading

Kapitler

1. Welcome to Practical AI (00:00:00)

2. What is Ragas (00:00:43)

3. General LLM evaluation (00:05:19)

4. Current unit testing workflow (00:10:10)

5. Metrics driven development (00:14:37)

6. Sponsor: Assembly AI (00:17:20)

7. Most used metrics (00:20:59)

8. Data burdens (00:26:27)

9. Exciting things coming (00:35:50)

10. Thanks for joining us! (00:40:49)

11. Outro (00:41:25)

295 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett