Artwork

Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Anatomy of a domain library

16:11
 
Del
 

Manage episode 295783831 series 2921809
Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 episoder

Artwork

Anatomy of a domain library

PyTorch Developer Podcast

26 subscribers

published

iconDel
 
Manage episode 295783831 series 2921809
Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

What's a domain library? Why do they exist? What do they do for you? What should you know about developing in PyTorch main library versus in a domain library? How coupled are they with PyTorch as a whole? What's cool about working on domain libraries?

Further reading.

Line notes.

  • why do domain libraries exist? lots of domains specific gadgets,
    inappropriate for PyTorch
  • what does a domain library do
    • operator implementations (old days: pure python, not anymore)
      • with autograd support and cuda acceleration
      • esp encoding/decoding, e.g., for domain file formats
        • torchbind for custom objects
        • takes care of getting the dependencies for you
      • esp transformations, e.g., for data augmentation
    • models, esp pretrained weights
    • datasets
    • reference scripts
    • full wheel/conda packaging like pytorch
    • mobile compatibility
  • separate repos: external contributors with direct access
    • manual sync to fbcode; a lot easier to land code! less
      motion so lower risk
  • coupling with pytorch? CI typically runs on nightlies
    • pytorch itself tests against torchvision, canary against
      extensibility mechanisms
    • mostly not using internal tools (e.g., TensorIterator),
      too unstable (this would be good to fix)
  • closer to research side of pytorch; francesco also part of papers
  continue reading

83 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill