Artwork

Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

AOTInductor

17:30
 
Del
 

Manage episode 404429948 series 2921809
Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
AOTInductor is a feature in PyTorch that lets you export an inference model into a self-contained dynamic library, which can subsequently be loaded and used to run optimized inference. It is aimed primarily at CUDA and CPU inference applications, for situations when your model export once to be exported once while your runtime may still get continuous updates. One of the big underlying organizing principles is a limited ABI which does not include libtorch, which allows these libraries to stay stable over updates to the runtime. There are many export-like use cases you might be interested in using AOTInductor for, and some of the pieces should be useful, but AOTInductor does not necessarily solve them.
  continue reading

83 episoder

Artwork

AOTInductor

PyTorch Developer Podcast

33 subscribers

published

iconDel
 
Manage episode 404429948 series 2921809
Innhold levert av PyTorch, Edward Yang, and Team PyTorch. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av PyTorch, Edward Yang, and Team PyTorch eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
AOTInductor is a feature in PyTorch that lets you export an inference model into a self-contained dynamic library, which can subsequently be loaded and used to run optimized inference. It is aimed primarily at CUDA and CPU inference applications, for situations when your model export once to be exported once while your runtime may still get continuous updates. One of the big underlying organizing principles is a limited ABI which does not include libtorch, which allows these libraries to stay stable over updates to the runtime. There are many export-like use cases you might be interested in using AOTInductor for, and some of the pieces should be useful, but AOTInductor does not necessarily solve them.
  continue reading

83 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett