Artwork

Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Does the DIFF Transformer make a Diff?

8:03
 
Del
 

Manage episode 449252081 series 3605861
Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episoder

Artwork
iconDel
 
Manage episode 449252081 series 3605861
Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Introducing a novel transformer architecture, Differential Transformer, designed to improve the performance of large language models. The key innovation lies in its differential attention mechanism, which calculates attention scores as the difference between two separate softmax attention maps. This subtraction effectively cancels out irrelevant context (attention noise), enabling the model to focus on crucial information. The authors demonstrate that Differential Transformer outperforms traditional transformers in various tasks, including long-context modeling, key information retrieval, and hallucination mitigation. Furthermore, Differential Transformer exhibits greater robustness to order permutations in in-context learning and reduces activation outliers, paving the way for more efficient quantization. These advantages position Differential Transformer as a promising foundation architecture for future large language model development.

Read the research here: https://arxiv.org/pdf/2410.05258

  continue reading

71 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett