Artwork

Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

WHY Are Probability And Stats Foundational to ML and DL?

13:39
 
Del
 

Manage episode 445331385 series 3605861
Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Probability and statistics are fundamental components of machine learning (ML) and deep learning (DL) because they provide the mathematical framework for understanding and analyzing data, which is crucial for making predictions and decisions.

This excerpt from the "Dive into Deep Learning" documentation explains the essential concepts of probability and statistics, which are crucial for understanding machine learning. The text introduces fundamental ideas like sample space, events, probability functions, and random variables, highlighting the distinction between discrete and continuous variables. It then delves into the relationships between multiple random variables, emphasizing the importance of conditional probabilities, Bayes' Theorem, and independence. The excerpt also covers expectations and variances, illustrating how they can be used to measure the average value and the spread of data. Finally, it explores the concepts of aleatoric and epistemic uncertainty, providing a framework for understanding the limitations of machine learning models and the role of data in improving their accuracy.

Read more: https://d2l.ai/chapter_preliminaries/probability.html

  continue reading

71 episoder

Artwork
iconDel
 
Manage episode 445331385 series 3605861
Innhold levert av Brian Carter. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Brian Carter eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Probability and statistics are fundamental components of machine learning (ML) and deep learning (DL) because they provide the mathematical framework for understanding and analyzing data, which is crucial for making predictions and decisions.

This excerpt from the "Dive into Deep Learning" documentation explains the essential concepts of probability and statistics, which are crucial for understanding machine learning. The text introduces fundamental ideas like sample space, events, probability functions, and random variables, highlighting the distinction between discrete and continuous variables. It then delves into the relationships between multiple random variables, emphasizing the importance of conditional probabilities, Bayes' Theorem, and independence. The excerpt also covers expectations and variances, illustrating how they can be used to measure the average value and the spread of data. Finally, it explores the concepts of aleatoric and epistemic uncertainty, providing a framework for understanding the limitations of machine learning models and the role of data in improving their accuracy.

Read more: https://d2l.ai/chapter_preliminaries/probability.html

  continue reading

71 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett