Africa-focused technology, digital and innovation ecosystem insight and commentary.
…
continue reading
Innhold levert av Simply News from Qurrent. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Simply News from Qurrent eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!
Gå frakoblet med Player FM -appen!
Game-Theoretic Approach to AI Deployment, GPU-Accelerated Optimization, and Language Model Control
MP3•Episoder hjem
Manage episode 440527659 series 3550973
Innhold levert av Simply News from Qurrent. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Simply News from Qurrent eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Optimizing AI safety and deployment with a game-theoretic approach. Introducing a new C++/CUDA library for GPU-accelerated stochastic optimization. Twisted Sequential Monte Carlo framework for language model control. Stay updated on the latest advancements in AI research and their potential impact on various industries.
Sources:
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
https://www.marktechpost.com/2024/09/18/mppi-generic-a-new-c-cuda-library-for-gpu-accelerated-stochastic-optimization/
https://www.marktechpost.com/2024/09/18/contrastive-twist-learning-and-bidirectional-smc-bounds-a-new-paradigm-for-language-model-control/
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
Outline:
(00:00:00) Introduction
(00:00:49) MPPI-Generic: A New C++/CUDA library for GPU-Accelerated Stochastic Optimization
(00:03:33) Contrastive Twist Learning and Bidirectional SMC Bounds: A New Paradigm for Language Model Control
(00:06:46) Optimizing AI Safety and Deployment: A Game-Theoretic Approach to Protocol Evaluation in Untrusted AI Systems
…
continue reading
Sources:
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
https://www.marktechpost.com/2024/09/18/mppi-generic-a-new-c-cuda-library-for-gpu-accelerated-stochastic-optimization/
https://www.marktechpost.com/2024/09/18/contrastive-twist-learning-and-bidirectional-smc-bounds-a-new-paradigm-for-language-model-control/
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
Outline:
(00:00:00) Introduction
(00:00:49) MPPI-Generic: A New C++/CUDA library for GPU-Accelerated Stochastic Optimization
(00:03:33) Contrastive Twist Learning and Bidirectional SMC Bounds: A New Paradigm for Language Model Control
(00:06:46) Optimizing AI Safety and Deployment: A Game-Theoretic Approach to Protocol Evaluation in Untrusted AI Systems
112 episoder
MP3•Episoder hjem
Manage episode 440527659 series 3550973
Innhold levert av Simply News from Qurrent. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Simply News from Qurrent eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Optimizing AI safety and deployment with a game-theoretic approach. Introducing a new C++/CUDA library for GPU-accelerated stochastic optimization. Twisted Sequential Monte Carlo framework for language model control. Stay updated on the latest advancements in AI research and their potential impact on various industries.
Sources:
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
https://www.marktechpost.com/2024/09/18/mppi-generic-a-new-c-cuda-library-for-gpu-accelerated-stochastic-optimization/
https://www.marktechpost.com/2024/09/18/contrastive-twist-learning-and-bidirectional-smc-bounds-a-new-paradigm-for-language-model-control/
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
Outline:
(00:00:00) Introduction
(00:00:49) MPPI-Generic: A New C++/CUDA library for GPU-Accelerated Stochastic Optimization
(00:03:33) Contrastive Twist Learning and Bidirectional SMC Bounds: A New Paradigm for Language Model Control
(00:06:46) Optimizing AI Safety and Deployment: A Game-Theoretic Approach to Protocol Evaluation in Untrusted AI Systems
…
continue reading
Sources:
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
https://www.marktechpost.com/2024/09/18/mppi-generic-a-new-c-cuda-library-for-gpu-accelerated-stochastic-optimization/
https://www.marktechpost.com/2024/09/18/contrastive-twist-learning-and-bidirectional-smc-bounds-a-new-paradigm-for-language-model-control/
https://www.marktechpost.com/2024/09/18/optimizing-ai-safety-and-deployment-a-game-theoretic-approach-to-protocol-evaluation-in-untrusted-ai-systems/
Outline:
(00:00:00) Introduction
(00:00:49) MPPI-Generic: A New C++/CUDA library for GPU-Accelerated Stochastic Optimization
(00:03:33) Contrastive Twist Learning and Bidirectional SMC Bounds: A New Paradigm for Language Model Control
(00:06:46) Optimizing AI Safety and Deployment: A Game-Theoretic Approach to Protocol Evaluation in Untrusted AI Systems
112 episoder
Alle episoder
×Velkommen til Player FM!
Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.