Artwork

Innhold levert av Tessl. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Tessl eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

The Graph Layer Behind NASA’s Breakthroughs | Michael Hunger

36:24
 
Del
 

Manage episode 493310236 series 3585084
Innhold levert av Tessl. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Tessl eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Kapitler

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 episoder

Artwork
iconDel
 
Manage episode 493310236 series 3585084
Innhold levert av Tessl. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Tessl eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Michael Hunger of Neo4j, joins Simon Maple to unpack how graph databases inject structure, intent, and traceability into modern AI systems.
On the docket:

  • why relationships in data encode intent
  • the black-box problem in vector based RAG
  • why devs should build their own MCP server

AI Native Dev, powered by Tessl and our global dev community, is your go-to podcast for solutions in software development in the age of AI. Tune in as we engage with engineers, founders, and open-source innovators to talk all things AI, security, and development.
Connect with us here:

  1. Michael Hunger- https://www.linkedin.com/in/jexpde/
  2. Simon Maple- https://www.linkedin.com/in/simonmaple/
  3. Tessl- https://www.linkedin.com/company/tesslio/
  4. AI Native Dev- https://www.linkedin.com/showcase/ai-native-dev/

(00:00) Trailer
(01:03) Introduction & Neo4j Origins
(03:02) Persisting Relationships for High-Performance Queries
(04:00) Modeling Business Intent & Key Use Cases
(05:00) Fraud Detection at Scale with Graph Algorithms
(06:11) Graph-Enhanced RAG vs. Vector-Only Retrieval
(09:02) Explainability & Drill-Down Evaluation in RAG
(13:05) Fusing Structured & Unstructured Data for Context
(15:00) MCP for Developer Productivity: Schema-to-Code & API Wrapping
(21:16) Security & Sandboxing Best Practices for MCP
(29:08) MCP Server Recommendations & Outro

Join the AI Native Dev Community on Discord: https://tessl.co/4ghikjh
Ask us questions: [email protected]

  continue reading

Kapitler

1. Trailer (00:00:00)

2. Introduction & Neo4j Origins (00:01:03)

3. Persisting Relationships for High-Performance Queries (00:03:02)

4. Modeling Business Intent & Key Use Cases (00:04:00)

5. Fraud Detection at Scale with Graph Algorithms (00:05:00)

6. Graph-Enhanced RAG vs. Vector-Only Retrieval (00:06:11)

7. Explainability & Drill-Down Evaluation in RAG (00:09:02)

8. Fusing Structured & Unstructured Data for Context (00:13:05)

9. MCP for Developer Productivity: Schema-to-Code & API Wrapping (00:15:00)

10. Security & Sandboxing Best Practices for MCP (00:21:57)

11. MCP Server Recommendations & Outro (00:29:49)

83 episoder

所有剧集

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill