Artwork

Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Scaling On-Prem Airflow With 2,000 DAGs at Numberly with Sébastien Crocquevieille

24:17
 
Del
 

Manage episode 501480374 series 2053958
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Artwork
iconDel
 
Manage episode 501480374 series 2053958
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Scaling 2,000+ data pipelines isn’t easy. But with the right tools and a self-hosted mindset, it becomes achievable.

In this episode, Sébastien Crocquevieille, Data Engineer at Numberly, unpacks how the team scaled their on-prem Airflow setup using open-source tooling and Kubernetes. We explore orchestration strategies, UI-driven stakeholder access and Airflow’s evolving features.

Key Takeaways:

00:00 Introduction.

02:13 Overview of the company’s operations and global presence.

04:00 The tech stack and structure of the data engineering team.

04:24 Running nearly 2,000 DAGs in production using Airflow.

05:42 How Airflow’s UI empowers stakeholders to self-serve and troubleshoot.

07:05 Details on the Kubernetes-based Airflow setup using Helm charts.

09:31 Transition from GitSync to NFS for DAG syncing due to performance issues.

14:11 Making every team member Airflow-literate through local installation.

17:56 Using custom libraries and plugins to extend Airflow functionality.

Resources Mentioned:

Sébastien Crocquevieille

https://www.linkedin.com/in/scroc/

Numberly | LinkedIn

https://www.linkedin.com/company/numberly/

Numberly | Website

https://numberly.com/

Apache Airflow

https://airflow.apache.org/

Grafana

https://grafana.com/

Apache Kafka

https://kafka.apache.org/

Helm Chart for Apache Airflow

https://airflow.apache.org/docs/helm-chart/stable/index.html

Kubernetes

https://kubernetes.io/

GitLab

https://about.gitlab.com/

KubernetesPodOperator – Airflow

https://airflow.apache.org/docs/apache-airflow-providers-cncf-kubernetes/stable/operators.html

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Wszystkie odcinki

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill