Artwork

Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Building Scalable ML Infrastructure at Outerbounds with Savin Goyal

36:46
 
Del
 

Manage episode 471106946 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Artwork
iconDel
 
Manage episode 471106946 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Machine learning is changing fast, and companies need better tools to handle AI workloads. The right infrastructure helps data scientists focus on solving problems instead of managing complex systems. In this episode, we talk with Savin Goyal, Co-Founder and CTO at Outerbounds, about building ML infrastructure, how orchestration makes workflows easier and how Metaflow and Airflow work together to simplify data science.

Key Takeaways:

(02:02) Savin spent years building AI and ML infrastructure, including at Netflix.

(04:05) ML engineering was not a defined role a decade ago.

(08:17) Modernizing AI and ML requires balancing new tools with existing strengths.

(10:28) ML workloads can be long-running or require heavy computation.

(15:29) Different teams at Netflix used multiple orchestration systems for specific needs.

(20:10) Stable APIs prevent rework and keep projects moving.

(21:07) Metaflow simplifies ML workflows by optimizing data and compute interactions.

(25:53) Limited local computing power makes running ML workloads challenging.

(27:43) Airflow UI monitors pipelines, while Metaflow UI gives ML insights.

(33:13) The most successful data professionals focus on business impact, not just technology.

Resources Mentioned:

Savin Goyal -

https://www.linkedin.com/in/savingoyal/

Outerbounds -

https://www.linkedin.com/company/outerbounds/

Apache Airflow -

https://airflow.apache.org/

Metaflow -

https://metaflow.org/

Netflix’s Maestro Orchestration System -

https://netflixtechblog.com/maestro-netflixs-workflow-orchestrator-ee13a06f9c78?gi=8e6a067a92e9#:~:text=Maestro%20is%20a%20fully%20managed,data%20between%20different%20storages%2C%20etc.

TensorFlow -

https://www.tensorflow.org/

PyTorch -

https://pytorch.org/

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill