Artwork

Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Inside Bosch’s Airflow 3 Revolution: Remote Execution with Jens Scheffler

28:02
 
Del
 

Manage episode 498747687 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

The evolution of Airflow has reached a milestone with the introduction of remote execution in Airflow 3, enabling flexible orchestration across distributed environments.

In this episode, Jens Scheffler, Test Execution Cluster Technical Architect at Bosch, shares insights on how his team’s need for large-scale, cross-environment testing influenced the development of the Edge Executor and shaped this major release.

Key Takeaways:

(02:39) The role of remote execution in supporting large-scale testing needs.

(04:44) How community support contributed to the Edge Executor’s development.

(08:41) Navigating network and infrastructure limitations within secure environments.

(13:25) Transitioning from database-heavy processes to an API-driven model.

(14:16) How the new task SDK in Airflow 3 improves distributed task execution.

(16:54) What is required to set up and configure the Edge Executor.

(19:36) Managing multiple queues to optimize tasks across different environments.

(23:30) Examples of extreme distance use cases for edge execution.

Resources Mentioned:

Jens Scheffler

https://www.linkedin.com/in/jens-scheffler/

Bosch | LinkedIn

https://www.linkedin.com/company/bosch/

Bosch | Website

https://www.bosch.com/

Apache Airflow

https://airflow.apache.org/

Edge Executor (Edge3 Provider Package)

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/executor/index.html

Astronomer’s Astro Executor

https://www.astronomer.io/docs/astro/astro-executor/

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Artwork
iconDel
 
Manage episode 498747687 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

The evolution of Airflow has reached a milestone with the introduction of remote execution in Airflow 3, enabling flexible orchestration across distributed environments.

In this episode, Jens Scheffler, Test Execution Cluster Technical Architect at Bosch, shares insights on how his team’s need for large-scale, cross-environment testing influenced the development of the Edge Executor and shaped this major release.

Key Takeaways:

(02:39) The role of remote execution in supporting large-scale testing needs.

(04:44) How community support contributed to the Edge Executor’s development.

(08:41) Navigating network and infrastructure limitations within secure environments.

(13:25) Transitioning from database-heavy processes to an API-driven model.

(14:16) How the new task SDK in Airflow 3 improves distributed task execution.

(16:54) What is required to set up and configure the Edge Executor.

(19:36) Managing multiple queues to optimize tasks across different environments.

(23:30) Examples of extreme distance use cases for edge execution.

Resources Mentioned:

Jens Scheffler

https://www.linkedin.com/in/jens-scheffler/

Bosch | LinkedIn

https://www.linkedin.com/company/bosch/

Bosch | Website

https://www.bosch.com/

Apache Airflow

https://airflow.apache.org/

Edge Executor (Edge3 Provider Package)

https://airflow.apache.org/docs/apache-airflow/stable/core-concepts/executor/index.html

Astronomer’s Astro Executor

https://www.astronomer.io/docs/astro/astro-executor/

Beyond Analytics Conference

https://astronomer.io/beyond/dataflowcast

Thanks for listening to “The Data Flowcast: Mastering Apache Airflow® for Data Engineering and AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill