Artwork

Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Using Airflow To Power Machine Learning Pipelines at Optimove with Vasyl Vasyuta

24:11
 
Del
 

Manage episode 455155998 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Data orchestration and machine learning are shaping how organizations handle massive datasets and drive customer-focused strategies. Tools like Apache Airflow are central to this transformation. In this episode, Vasyl Vasyuta, R&D Team Leader at Optimove, joins us to discuss how his team leverages Airflow to optimize data processing, orchestrate machine learning models and create personalized customer experiences.

Key Takeaways:

(01:59) Optimove tailors marketing notifications with personalized customer journeys.

(04:25) Airflow orchestrates Snowflake procedures for massive datasets.

(05:11) DAGs manage workflows with branching and replay plugins.

(05:41) The "Joystick" plugin enables seamless data replays.

(09:33) Airflow supports MLOps for customer data grouping.

(11:15) Machine learning predicts customer behavior for better campaigns.

(13:20) Thousands of DAGs run every five minutes for data processing.

(15:36) Custom versioning allows rollbacks and gradual rollouts.

(18:00) Airflow logs enhance operational observability.

(23:00) DAG versioning in Airflow 3.0 could boost efficiency.

Resources Mentioned:

Vasyl Vasyuta -

https://www.linkedin.com/in/vasyl-vasyuta-3270b54a/

Optimove -

https://www.linkedin.com/company/optimove/

Apache Airflow -

https://airflow.apache.org/

Snowflake -

https://www.snowflake.com/

Datadog -

https://www.datadoghq.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

Artwork
iconDel
 
Manage episode 455155998 series 2948506
Innhold levert av The Data Flowcast. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Data Flowcast eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.

Data orchestration and machine learning are shaping how organizations handle massive datasets and drive customer-focused strategies. Tools like Apache Airflow are central to this transformation. In this episode, Vasyl Vasyuta, R&D Team Leader at Optimove, joins us to discuss how his team leverages Airflow to optimize data processing, orchestrate machine learning models and create personalized customer experiences.

Key Takeaways:

(01:59) Optimove tailors marketing notifications with personalized customer journeys.

(04:25) Airflow orchestrates Snowflake procedures for massive datasets.

(05:11) DAGs manage workflows with branching and replay plugins.

(05:41) The "Joystick" plugin enables seamless data replays.

(09:33) Airflow supports MLOps for customer data grouping.

(11:15) Machine learning predicts customer behavior for better campaigns.

(13:20) Thousands of DAGs run every five minutes for data processing.

(15:36) Custom versioning allows rollbacks and gradual rollouts.

(18:00) Airflow logs enhance operational observability.

(23:00) DAG versioning in Airflow 3.0 could boost efficiency.

Resources Mentioned:

Vasyl Vasyuta -

https://www.linkedin.com/in/vasyl-vasyuta-3270b54a/

Optimove -

https://www.linkedin.com/company/optimove/

Apache Airflow -

https://airflow.apache.org/

Snowflake -

https://www.snowflake.com/

Datadog -

https://www.datadoghq.com/

Apache Airflow Survey -

https://astronomer.typeform.com/airflowsurvey24

Thanks for listening to “The Data Flowcast: Mastering Airflow for Data Engineering & AI.” If you enjoyed this episode, please leave a 5-star review to help get the word out about the show. And be sure to subscribe so you never miss any of the insightful conversations.

#AI #Automation #Airflow #MachineLearning

  continue reading

82 episoder

सभी एपिसोड

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2025 | Personvern | Vilkår for bruk | | opphavsrett
Lytt til dette showet mens du utforsker
Spill