Artwork

Innhold levert av Sebastian Hassinger and Kevin Rowney. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Sebastian Hassinger and Kevin Rowney eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Quantum computing for high energy physics simulations with Martin Savage

36:22
 
Del
 

Manage episode 411347389 series 3377506
Innhold levert av Sebastian Hassinger and Kevin Rowney. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Sebastian Hassinger and Kevin Rowney eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
  • Dr. Martin Savage is a professor of nuclear theory and quantum informatics at the University of Washington. His research explores using quantum computing to investigate high energy physics and quantum chromodynamics.
  • Dr. Savage transitioned from experimental nuclear physics to theoretical particle physics in his early career. Around 2017-2018, limitations in classical computing for certain nuclear physics problems led him to explore quantum computing.
  • In December 2022, Dr. Savage's team used 112 qubits on IBM's Heron quantum processor to simulate hadron dynamics in the Schwinger Model. This groundbreaking calculation required 14,000 CNOT gates at a depth of 370.
  • Error mitigation techniques, translational invariance in the system, and running the simulation over the December holidays when the quantum hardware was available enabled this large-scale calculation.
  • While replacing particle accelerator experiments is not the goal, quantum computers could eventually complement experiments by simulating environments not possible in a lab, like the interior of a neutron star.
  • Quantum information science is increasingly important in the pedagogy of particle physics. Advances in quantum computing hardware and error mitigation are steadily enabling more complex simulations.
  • The incubator for quantum simulation at University of Washington brings together researchers across disciplines to collaborate on using quantum computers to advance nuclear and particle physics.

Links:
Dr. Savage's home page
The InQubator for Quantum Simulation
Quantum Simulations of Hadron Dynamics in the Schwinger Model using 112 Qubits
IBM's blog post which contains some details regarding the Heron process and the 100x100 challenge.

  continue reading

32 episoder

Artwork
iconDel
 
Manage episode 411347389 series 3377506
Innhold levert av Sebastian Hassinger and Kevin Rowney. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Sebastian Hassinger and Kevin Rowney eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
  • Dr. Martin Savage is a professor of nuclear theory and quantum informatics at the University of Washington. His research explores using quantum computing to investigate high energy physics and quantum chromodynamics.
  • Dr. Savage transitioned from experimental nuclear physics to theoretical particle physics in his early career. Around 2017-2018, limitations in classical computing for certain nuclear physics problems led him to explore quantum computing.
  • In December 2022, Dr. Savage's team used 112 qubits on IBM's Heron quantum processor to simulate hadron dynamics in the Schwinger Model. This groundbreaking calculation required 14,000 CNOT gates at a depth of 370.
  • Error mitigation techniques, translational invariance in the system, and running the simulation over the December holidays when the quantum hardware was available enabled this large-scale calculation.
  • While replacing particle accelerator experiments is not the goal, quantum computers could eventually complement experiments by simulating environments not possible in a lab, like the interior of a neutron star.
  • Quantum information science is increasingly important in the pedagogy of particle physics. Advances in quantum computing hardware and error mitigation are steadily enabling more complex simulations.
  • The incubator for quantum simulation at University of Washington brings together researchers across disciplines to collaborate on using quantum computers to advance nuclear and particle physics.

Links:
Dr. Savage's home page
The InQubator for Quantum Simulation
Quantum Simulations of Hadron Dynamics in the Schwinger Model using 112 Qubits
IBM's blog post which contains some details regarding the Heron process and the 100x100 challenge.

  continue reading

32 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett