Artwork

Innhold levert av The Quant / Financial Engineering Podcast and Patrick J Zoro. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Quant / Financial Engineering Podcast and Patrick J Zoro eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Reinforcement Learning and Interpretability

34:59
 
Del
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:28 (22d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 320254265 series 2686124
Innhold levert av The Quant / Financial Engineering Podcast and Patrick J Zoro. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Quant / Financial Engineering Podcast and Patrick J Zoro eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

51 episoder

Artwork
iconDel
 

Fetch error

Hmmm there seems to be a problem fetching this series right now. Last successful fetch was on October 11, 2024 00:28 (22d ago)

What now? This series will be checked again in the next day. If you believe it should be working, please verify the publisher's feed link below is valid and includes actual episode links. You can contact support to request the feed be immediately fetched.

Manage episode 320254265 series 2686124
Innhold levert av The Quant / Financial Engineering Podcast and Patrick J Zoro. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av The Quant / Financial Engineering Podcast and Patrick J Zoro eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Patrick Zoro welcomes to his podcasts Hariom Tatsat author of the book "Machine Learning and Data Science Blueprints for Finance: From Building Trading Strategies to Robo-Advisors Using Python 1st Edition", Bryan Yekelchik Lehigh MFE graduate and Zach Coriarty 4th Year, Bachelors of Science in Computer Science and Business at Lehigh University, Interested in data science and ML, LinkedIn: https://www.linkedin.com/in/zachary-coriarty/ They discuss their recent paper on "Deep Q-Network Interpertability: Applications to ETF Trading" https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3973146 https://www.svedbergopen.com/files/1643786733_(3)_IJAIML2021YH205248CR_(p_61-70).pdf
  continue reading

51 episoder

Minden epizód

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett