Artwork

Innhold levert av Carey Parker. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Carey Parker eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!

Morpheus: Securing CPUs with Entropy

1:03:35
 
Del
 

Manage episode 301116084 series 2372096
Innhold levert av Carey Parker. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Carey Parker eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Computers are supposed to be completely predictable. When you tell it to do something, it should do exactly that - over and over again, if necessary - in the same way, with the same result. This is the nature of computer programming. But this predictability can allow computer criminals to interrupt a computer's processing and divert it to do nefarious things. If you know exactly where to poke the system, predicting where and how it does it's processing, you can effectively rewire it to do your bidding. This is the basic attack methodology that lets bad guys insert their malware into our systems. But what if we were able to randomly perturb a computer's processing on a periodic basis, making it effectively unpredictable? This is the essence of a new computer architecture called Morpheus that may one day make all of our computers and computerized devices much, much harder to hack. Today, Todd Austin will explain how this brilliant defense mechanism works and how it was inspired by the human body's immune system. Todd Austin is a Professor of Electrical Engineering and Computer Science at the University of Michigan in Ann Arbor. His research interests include computer architecture, robust and secure system design, hardware and software verification, and performance analysis tools and techniques. Todd is also co-founder of Agita Labs, a startup developing privacy-enhanced computation technologies that help ease the tension between data discovery and personal privacy. Further Info Morpheus article: https://spectrum.ieee.org/morpheus-turns-a-cpu-into-a-rubiks-cube-to-defeat-hackers Morpheus video: https://www.youtube.com/watch?v=v2mLm2QqsVo DARPA SSITH program: https://www.darpa.mil/program/ssith Become a Patron! https://www.patreon.com/FirewallsDontStopDragons Would you like me to speak to your group about security and/privacy? http://bit.ly/Firewalls-SpeakerGenerate secure passphrases! https://d20key.com/#/
  continue reading

376 episoder

Artwork
iconDel
 
Manage episode 301116084 series 2372096
Innhold levert av Carey Parker. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av Carey Parker eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Computers are supposed to be completely predictable. When you tell it to do something, it should do exactly that - over and over again, if necessary - in the same way, with the same result. This is the nature of computer programming. But this predictability can allow computer criminals to interrupt a computer's processing and divert it to do nefarious things. If you know exactly where to poke the system, predicting where and how it does it's processing, you can effectively rewire it to do your bidding. This is the basic attack methodology that lets bad guys insert their malware into our systems. But what if we were able to randomly perturb a computer's processing on a periodic basis, making it effectively unpredictable? This is the essence of a new computer architecture called Morpheus that may one day make all of our computers and computerized devices much, much harder to hack. Today, Todd Austin will explain how this brilliant defense mechanism works and how it was inspired by the human body's immune system. Todd Austin is a Professor of Electrical Engineering and Computer Science at the University of Michigan in Ann Arbor. His research interests include computer architecture, robust and secure system design, hardware and software verification, and performance analysis tools and techniques. Todd is also co-founder of Agita Labs, a startup developing privacy-enhanced computation technologies that help ease the tension between data discovery and personal privacy. Further Info Morpheus article: https://spectrum.ieee.org/morpheus-turns-a-cpu-into-a-rubiks-cube-to-defeat-hackers Morpheus video: https://www.youtube.com/watch?v=v2mLm2QqsVo DARPA SSITH program: https://www.darpa.mil/program/ssith Become a Patron! https://www.patreon.com/FirewallsDontStopDragons Would you like me to speak to your group about security and/privacy? http://bit.ly/Firewalls-SpeakerGenerate secure passphrases! https://d20key.com/#/
  continue reading

376 episoder

Alle episoder

×
 
Loading …

Velkommen til Player FM!

Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.

 

Hurtigreferanseguide

Copyright 2024 | Sitemap | Personvern | Vilkår for bruk | | opphavsrett