Starting Strength is the bestselling book on the most fundamental and effective approach to strength training ever written. Mark Rippetoe hosts Starting Strength Radio where he discusses topics of interest, primarily to him, but perhaps also to you.
…
continue reading
Innhold levert av humanOS Radio and Dan Pardi. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av humanOS Radio and Dan Pardi eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Player FM - Podcast-app
Gå frakoblet med Player FM -appen!
Gå frakoblet med Player FM -appen!
#049 - Clearing Zombie-Like Senescent Cells Reserves Signs of Aging - Professor Paul Robbins
MP3•Episoder hjem
Manage episode 219932478 series 1248550
Innhold levert av humanOS Radio and Dan Pardi. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av humanOS Radio and Dan Pardi eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Aging is arguably the leading risk factor for chronic diseases in the modern world. We have historically thought of aging as an inexorable decline of function, driven by the passage of time - something that we simply have to accept, and that cannot be changed. But what if aging were actually a modifiable risk factor? Your chronological age, meaning the length of time that you have been alive, obviously cannot be changed. But we know that biological aging can vary significantly, even among individuals who are of similar chronological age. If we can better understand the fundamental mechanisms that underlie biological aging, we might be able to devise interventions that could prevent or delay age-related diseases. One of the relevant processes is cellular senescence. Cellular senescence is a phenomenon through which normal cells irreversibly cease to divide in response to genomic damage. Senescent cells accumulate in the body as we get older, and they actually do a lot of bad stuff in the body. Senescent cells secrete pro-inflammatory factors, like cytokines, which induces a state of chronic low-grade inflammation. But it gets even worse. These senescent cells can also drive other healthy neighboring cells into senescence. So senescent cells are basically microscopic zombies! This has driven interest in identifying senolytics - compounds that can selectively kill senescent cells (while leaving normal cells alone). In this episode of humanOS Radio, Dan talks to Paul Robbins. Paul is the principal investigator at the Robbins Lab at Scripps Research Institute. Notably, his lab has been screening for drugs that can safely and effectively clear out senescent cells. This research has produced some remarkable results in animal models. For example, he and colleagues found that older mice that were given senolytics became faster and stronger, and experienced a 36% increased median post-treatment lifespan, compared to a control group. Wow! That’s just a tiny snapshot of this incredibly important work. To learn more, please check out the interview!
…
continue reading
93 episoder
MP3•Episoder hjem
Manage episode 219932478 series 1248550
Innhold levert av humanOS Radio and Dan Pardi. Alt podcastinnhold, inkludert episoder, grafikk og podcastbeskrivelser, lastes opp og leveres direkte av humanOS Radio and Dan Pardi eller deres podcastplattformpartner. Hvis du tror at noen bruker det opphavsrettsbeskyttede verket ditt uten din tillatelse, kan du følge prosessen skissert her https://no.player.fm/legal.
Aging is arguably the leading risk factor for chronic diseases in the modern world. We have historically thought of aging as an inexorable decline of function, driven by the passage of time - something that we simply have to accept, and that cannot be changed. But what if aging were actually a modifiable risk factor? Your chronological age, meaning the length of time that you have been alive, obviously cannot be changed. But we know that biological aging can vary significantly, even among individuals who are of similar chronological age. If we can better understand the fundamental mechanisms that underlie biological aging, we might be able to devise interventions that could prevent or delay age-related diseases. One of the relevant processes is cellular senescence. Cellular senescence is a phenomenon through which normal cells irreversibly cease to divide in response to genomic damage. Senescent cells accumulate in the body as we get older, and they actually do a lot of bad stuff in the body. Senescent cells secrete pro-inflammatory factors, like cytokines, which induces a state of chronic low-grade inflammation. But it gets even worse. These senescent cells can also drive other healthy neighboring cells into senescence. So senescent cells are basically microscopic zombies! This has driven interest in identifying senolytics - compounds that can selectively kill senescent cells (while leaving normal cells alone). In this episode of humanOS Radio, Dan talks to Paul Robbins. Paul is the principal investigator at the Robbins Lab at Scripps Research Institute. Notably, his lab has been screening for drugs that can safely and effectively clear out senescent cells. This research has produced some remarkable results in animal models. For example, he and colleagues found that older mice that were given senolytics became faster and stronger, and experienced a 36% increased median post-treatment lifespan, compared to a control group. Wow! That’s just a tiny snapshot of this incredibly important work. To learn more, please check out the interview!
…
continue reading
93 episoder
Todos os episódios
×Velkommen til Player FM!
Player FM scanner netter for høykvalitets podcaster som du kan nyte nå. Det er den beste podcastappen og fungerer på Android, iPhone og internett. Registrer deg for å synkronisere abonnement på flere enheter.